山东省烟台市福山区2020-2021学年八年级下学期期中数学试题(word版含答案)
展开山东省烟台市福山区2020-2021学年八年级下学期期中数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.若二次根式与是同类二次根式,则的值有可能是( )
A. B. C. D.
2.使有意义的实数的取值范围是( )
A. B.且 C.且 D.且
3.下列计算正确的是( )
A. B.
C. D.
4.下列结论:①若,则;②方程的解为;③若分式的值为,则或.正确的有( )
A.个 B.个 C.个 D.个
5.已知四边形是平行四边形,,相交于点O,下列结论错误的是( )
A.,
B.当时,四边形是菱形
C.当时,四边形是矩形
D.当且时,四边形是正方形
6.若x为实数,在的“”中添上一种运算符号(在+,-,×,÷中选择)后,其运算的结果是有理数,则x不可能的是( )
A. B. C. D.
7.某果园今年栽种果树棵,现计划扩大种植面积,使今后两年的栽种量都比前一年增长一个相同的百分数,这样三年(包括今年)的总栽种量为棵.若这个百分数为,则由题意可列方程为( )
A. B.
C. D.
8.若方程是关于的一元二次方程,则等于( )
A. B. C. D.
9.已知x1,x2是一元二次方程x2﹣3x+1=0的两实数根,则的值是( )
A.﹣7 B.﹣1 C.1 D.7
10.扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为,则可列方程为( )
A. B.
C. D.
11.如图,点在正方形的边上,将绕点顺时针旋转到的位置,连接,过点作的垂线,垂足为点,与交于点.若,,则的长为( )
A. B. C.4 D.
12.对于任意的正数m,n定义运算※为:m※n=计算(3※2)×(8※12)的结果为( )
A.2-4 B.2 C.2 D.20
二、填空题
13.式子有意义,则点在第______象限.
14.若关于的一元二次方程有两个不相等的实数根,则实数的取值范围是_______.
15.对于实数、,定义算“♫”如下:♫,若♫,则_______.
16.如图,矩形中,点,分别是,的中点,连接和,分别取,的中点,.连接,,.若,,则图中阴影部分的面积为_______.
17.如图,在矩形中,.将向内翻折,点落在上,记为,折痕为.若将沿向内翻折,点恰好落在上,记为,则______.
18.如图,菱形中,,坐标为,再以为对称中心作菱形,再以为对称中心作菱形,按此规律继续作下去,得到菱形,则的坐标为_______.
三、解答题
19.计算
(1)
(2)
(3)
20.解方程:
(1)2(x﹣1)2=18;
(2)x2﹣2x=2x+1.
21.已知关于的方程有两不相等的实数根.
(1)求的取值范围:
(2)设方程两实数根分别为,.且,求实数的值.
22.已知关于x的一元二次方程.
(1)求证:方程总有两个实数根;
(2)若方程有一个根是负数,求m的取值范围.
23.如图,在四边形中,,点是对角线的中点,过点作的垂线,分别交、于点、.连接,.试判断四变形的形状,并证明.
24.某电子商店在销售某型号电话手表时,以高出进价的标价.已知按标价九折销售该型号电话手表8块与将标价直降100元销售7块获利相同.
(1)求该型号电话手表每块进价和标价分别是多少元?
(2)若该型号电话手表的进价不变,按(1)中的标价出售,该店平均每月可售出块,若每块电话手表每降价20元,每月可多售出3块.若希望尽量减少库存,每月获利要想达到元.该型号电话手表每块应降价多少元?
25.小明在解决问题:已知a=,求2a2-8a+1的值,他是这样分析与解答的:
因为a===2-,
所以a-2=-.
所以(a-2)2=3,即a2-4a+4=3.
所以a2-4a=-1.
所以2a2-8a+1=2(a2-4a)+1=2×(-1)+1=-1.
请你根据小明的分析过程,解决如下问题:
(1)计算: = - .
(2)计算:+…+;
(3)若a=,求4a2-8a+1的值.
26.如图,四边形是正方形,点在直线上,连接将沿所在直线折叠,点的对应点是点,连接并延长直线于点.
(1)当点与点重合时,如图1,试证明:;
(2)当点在的延长线上时,如图2,当点在的延长线上时,如图3,线段、、有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.
参考答案
1.A
【分析】
根据同类二次根式的概念,化为最简后被开方数相同的根式称为同类二次根式,由题意得:2a-4是的2倍,其中n为正有理数,根据此结论即可求得可能的a值.
【详解】
由题意得:(n为正有理数)
即
当n=2时,此时a=6,n其它的取值不符合题意
故选:A.
【点睛】
本题考查了同类二次根式,这里要注意的是:不一定是最简二次根式,故2a-4一定是一个正有理数平方的2倍.
2.D
【分析】
要使有意义,则x的取值要满足两个条件:一是分母有意义,即分母不为0;二是分子的被开方数非负,由此得关于 x的不等式组,解不等式组即可求得x的取值范围.
【详解】
由题意得:
解不等式组得:且
故选:D.
【点睛】
本题考查了使代数式有意义的字母的取值范围,不等式组的解法,对于含有分母的代数式,分母不为0;若含有二次根式,则被开方数非负.
3.D
【分析】
根据二次根式的运算及性质完成即可.
【详解】
A、,故计算错误;
B、由于与不是同类二次根式,故不能合并,故计算错误;
C、因,所以,故计算错误;
D、计算正确;
故选:D.
【点睛】
本题考查了二次根式的加减运算和二次根式的性质,几个二次根式化在最简二次根式后,如果被平方数相同,则它们可以进行加减运算,且可以合并成一项;对于二次根式的性质 ,在运用时一定要注意字母a的取值符号.
4.A
【分析】
①利用直接开方法求出解,即可做出判断;②利用分解因式方法求出解,即可做出判断;③利用分式值为0的条件计算求出x的值,即可做出判断;
【详解】
解:①若x2=16,则x=±4,错误;
②移项得:x(2x﹣1)﹣(2x﹣1)=0,
(2x﹣1)(x﹣1)=0,
解得:x1=,x2=1,错误;
③根据题意得:(x﹣1)(x﹣2)=0,且x﹣1≠0,
解得:x=2,错误;
故选:A
【点睛】
此题考查了解一元二次方程和分式有意义的条件,熟练掌握一元二次方程的解法是解本题的关键.
5.B
【分析】
根据平行四边形的性质,菱形,矩形,正方形的判定逐一判断即可.
【详解】
解:四边形是平行四边形,
,故A正确,
四边形是平行四边形,,
不能推出四边形是菱形,故错误,
四边形是平行四边形,,
四边形是矩形,故C正确,
四边形是平行四边形,,,
四边形是正方形.故D正确.
故选B.
【点睛】
本题考查的是平行四边形的性质,矩形,菱形,正方形的判定,掌握以上知识是解题的关键.
6.C
【分析】
根据题意填上运算符计算即可.
【详解】
A.,结果为有理数;
B. ,结果为有理数;
C.无论填上任何运算符结果都不为有理数;
D.,结果为有理数;
故选C.
【点睛】
本题考查实数的运算,关键在于牢记运算法则.
7.D
【分析】
先表示出各年栽种果树棵数,进而列出方程即可.
【详解】
解:设这个百分数为x,今年栽种果树棵,第二年栽种果树300(1+x)棵,第三年栽种果树300(1+x)2棵,根据题意列方程得,
300+300(1+x)+300(1+x)2=2100,
故选:D.
【点睛】
此题主要考查了一元二次方程的应用,分别表示出各年的栽种数量是解题关键.
8.B
【分析】
根据一元二次方程的定义,要求含未知数的最高次数为2,即;且二次项系数非零,根据这两个条件即可求得m的值.
【详解】
由题意,得
解得:m=3或m=-3
而当m=-3时,m+3=0,此时方程不是一元二次方程,不符合题意,应舍去
所以m=3
故选:B.
【点睛】
本题考查了一元二次方程的定义,掌握此定义是解题的关键,同时一定要保证二次项系数不为零.
9.A
【分析】
先根据一元二次方程解的定义得到x12﹣3x1+1=0,x22﹣3x2+1=0,则1﹣3x1=﹣x12,1﹣3x2=﹣x22,则 可变形为,再根据根与系数的关系得到x1+x2=3,x1x2=1,然后利用整体代入的方法计算.
【详解】
解:∵x1,x2是一元二次方程x2﹣3x+1=0的两实数根,
∴x12﹣3x1+1=0,x22﹣3x2+1=0,
∴1﹣3x1=﹣x12,1﹣3x2=﹣x22,
∴=﹣=﹣,
∵x1,x2是一元二次方程x2﹣3x+1=0的两实数根,
∴x1+x2=3,x1x2=1,
∴原式=﹣=﹣7.
故选A.
【点睛】
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了根与系数的关系.
10.D
【分析】
根据空白区域的面积矩形空地的面积可得.
【详解】
设花带的宽度为,则可列方程为,
故选D.
【点睛】
本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.
11.B
【分析】
根据正方形性质和已知条件可知BC=CD=5,再由旋转可知DE=BF,设DE=BF=x,则CE=5-x,CF=5+x,然后再证明△ABG∽△CEF,根据相似三角形的性质列方程求出x,最后求CE即可.
【详解】
解:∵,
∴BC=BG+GC=2+3=5
∵正方形
∴CD=BC=5
设DE=BF=x,则CE=5-x,CF=5+x
∵AH⊥EF,∠ABG=∠C=90°
∴∠HFG+∠AGF=90°,∠BAG+∠AGF=90°
∴∠HFG=∠BAG
∴△ABG∽△CEF
∴ ,即,解得x=
∴CE=CD-DE=5-=.
故答案为B.
【点睛】
本题考查了正方形的性质和相似三角形的判定与性质,根据相似三角形的性质列方程求出DE的长是解答本题的关键.
12.B
【详解】
试题分析:∵3>2,∴3※2=,∵8<12,∴8※12==,∴(3※2)×(8※12)=()×=2.故选B.
考点:1.二次根式的混合运算;2.新定义.
13.三
【分析】
根据式子有意义,可以判断出字母x、y的符号,从而可以得出点P所在的象限.
【详解】
由题意得:-x≥0,且xy>0
由-x≥0得:x≤0
但当x=0时,xy=0,不合题意
所以x<0
当x<0时,由xy>0得y<0
所以x<0,且y<0
则点P在第三象限
故答案为:三.
【点睛】
本题主要考查了使代数式有意义的字母的取值范围,判断点所在的象限,关键是根据式子确定字母x与y的符号.
14.且
【分析】
利用一元二次方程根与系数的关系判断即可得出答案.
【详解】
,解得
又方程为一元二次方程,∴
故答案为:且.
【点睛】
本题考查的是一元二次方程根与系数的关系,用判别式来判断,有两个不相等的实数根,有两个相等的实数根,无实数根.
15.或
【分析】
按照定义的新运算完成即可.
【详解】
∵♫
∴♫
即
整理得:
解得:a=3或a=-2
故答案为:或.
【点睛】
本题是定义新运算问题,考查了乘法公式的运用,解一元二次方程等知识,关键是弄懂新运算的含义.
16.
【分析】
根据矩形的中心对称性判断出阴影部分的面积等于矩形面积的一半,然后列式计算即可求得结果.
【详解】
根据矩形的中心对称性得:
∵,
∴
故答案为:.
【点睛】
本题考查了矩形的性质,利用矩形的中心对称性判断出阴影部分的面积是矩形面积的一半是本题的关键之处.
17.
【分析】
利用折叠的性质,可求∠AED=∠A'ED,∠A'EB =∠A'EB',AD=A'D,∠ADE=∠A'DE,根据矩形的性质可得∠ADC=∠C=∠A=90°,CD=AB,进而可得∠A'DC=30°,在Rt△A'DC中,设A'C =x,则A'D=2x,根据勾股定理可求出A'D的长度,继而求解.
【详解】
解:由折叠的性质可得:∠AED=∠A'ED,∠A'EB =∠A'EB',AD=A'D,∠ADE=∠A'DE,
∵四边形ABCD为矩形,
∴∠ADC=∠C=∠A=90°,AB=DC=,
∵∠AED+∠A'ED+∠A'EB =180°,
∴∠AED =∠A'ED=∠A'EB =60°,
∴∠ADE=90°﹣60°=30°=∠A'DE,
∴∠A'DC+∠A'DE+∠ADE=∠ADC=90°
∴∠A'DC=90°-60°=30°
在Rt△A'DC中,设A'C =x,则A'D=2x,
根据勾股定理可得,即
解得:(负数舍去)
∴A'C =1,A'D=2,
∴AD= A'D=2,
故答案为:2
【点睛】
本题考查了折叠的性质,矩形的性质,含30°角的直角三角形的性质,勾股定理等知识,熟练掌握折叠的性质是解答本题的关键.
18.
【分析】
连接,,先根据已知条件结合菱形的性质求出,根据勾股定理求出的长,再由相似三角形求出,继续求解找出规律即可得出结论.
【详解】
解:如下图所示:
根据菱形的性质可知:
连接必过点,且,
同理可得,……,,
∵为菱形的对称中心,
∴,
在中,,
根据勾股定理可得,,
∵且,
∴,,,
同理可得:,
,
……
,
根据勾股定理可得: ,
∴的坐标为
故答案为:
【点睛】
本题考查菱形的性质、规律型-点的坐标,相似三角形的性质等知识,解题的关键是学会从特殊到一般的探究方法,属于中考常考题型.
19.(1);(2);(3)
【分析】
(1)先化简二次根式,再合并即可;
(2)先算二次根式乘除,再化简合并即可;
(3)先用公式计算,再合并即可.
【详解】
解:(1),
,
;
(2),
,
;
(3)解:,
,
.
【点睛】
本考查了二次根式的运算,解题关键是熟练运用二次根式运算法则和乘法公式进行准确计算.
20.(1)x1=4,x2=﹣2;(2)x1=2,x2=2.
【分析】
(1)利用直接开平方法求解可得;
(2)利用配方法求解可得.
【详解】
解:(1)2(x﹣1)2=18;
方程两边除以2,得:(x﹣1)2=9,
则x﹣1=3或x﹣1=﹣3,
则x1=4,x2=﹣2;
(2)x2﹣2x=2x+1
原方程可整理为:x2﹣4x+4=5,则(x﹣2)2=5,
则x﹣2或x﹣2,
解得:x1=2,x2=2.
【点睛】
本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.
21.(1);(2)-4
【分析】
(1)利用一元二次方程根的判别式,即可求即可;
(2)由根与系数关系得,,,根据,可得到关于 的方程,即可求解.
【详解】
解:(1)关于的方程有两不相等的实数根,
,
;
(2)由根与系数关系得,,,
,
,
,
整理得,,
,
,,
经检验,,都是原方程的根,
由(1)得,,
不符合题意,舍去,
的值为.
【点睛】
本题主要考查了一元二次方程的根的判别式和根与系数的关系,解分式方程,理解并掌握一元二次方程的根的判别式和根与系数的关系是解题的关键.
22.(1)证明见解析(2)m<2
【分析】
(1)证明△≥0即可;
(2)根据根与系数的关系得出2m<0,求出不等式的解集即可.
【详解】
(1)证明:∵△=(m+1)2-4(3m-6)=m2-10m+25=(m-5)2≥0
∴无论实数m取何值,方程总有两个实根
(2),
(x-3)[x-(m-2)]=0,
解得:x1=3,x2=m-2
∵方程有一个根是负数
∴m-2<0,
解得,m<2
【点睛】
本题考查了根的判别式和根与系数的关系,能熟练地运用知识点进行求解是解此题的关键,注意:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
23.四边形为菱形,证明见解析
【分析】
先证四边形AECF是平行四边形,为此只要证明 ,问题即解决;再由EF⊥AC即可知四边形AECF是菱形.
【详解】
解:四边形为菱形
证明如下:(如图)
,
.
是中点,
.
在和中
.
.
又,
四边形为平行四边形,
,
平行四边形为菱形.
【点睛】
本题考查了菱形的判定,三角形全等的判定与性质,关键是证明.
24.(1)该型号电话手表每块的进价为元,标价为元;(2)该型号电话手表每块降价元时,每月获利元.
【分析】
(1)设该型号电话手表每块进价为元,则标价是元,根据“按标价九折销售该型号电话手表8块与将标价直降100元销售7块获利相同.”可列出方程,即可求解;
(2)设该型号电话手表每块降价元,根据“该店平均每月可售出块,若每块电话手表每降价20元,每月可多售出3块.若希望尽量减少库存,每月获利要想达到元.”可列出方程,解出即可.
【详解】
解:(1)设该型号电话手表每块进价为元,则标价是元,
由题意得:
解得:,
∴(元),
答:该型号电话手表每块的进价为元,标价为元
(2)设该型号电话手表每块降价元,
由题意得:
整理得:,
解得:,
∵尽量减少库存,
∴
答:该型号电话手表每块降价元时,每月获利元.
【点睛】
本题主要考查了一元一次方程的应用和一元二次方程的应用,明确题意,找到等量关系是解题的关键.
25.(1) ,1;(2) 9;(3) 5
【分析】
(1);
(2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求解;
(3)首先化简,然后把所求的式子化成代入求解即可.
【详解】
(1)计算: ;
(2)原式;
(3),
则原式,
当时,原式.
【点睛】
本题考查了二次根式的化简求值,正确读懂例题,对根式进行化简是关键.
26.(1)见解析;(2)图(2)的结论:;图(3)的结论:;证明见解析
【分析】
(1)由折叠可得AB=AB′,BE=B′E,再根据四边形ABCD是正方形,易证B′E=B′F,即可证明DF+BE=AF;
(2)图(2)的结论:DF+BE=AF;图(3)的结论:BE-DF=AF;证明图(2):延长CD到点G,使 DG=BE,连接AG,需证△ABE≌△ADG,根据CB∥AD,得∠AEB=∠EAD,即可得出 ∠B′AE=∠DAG,则∠GAF=∠DAE,则∠AGD=∠GAF,即可得出答案BE+DF=AF.
【详解】
证明:(1)由折叠可得,,
四边形是正方形,
,,
,
,
即;
(2)图(2)的结论:;
图(3)的结论:;
图(2)的证明:延长到点,使,连接,
∵AB=AD,∠B=∠ADG,
∴,
,
,
,
,
,
,
,
,
;
图(3)的证明:在上取点,使,连接,
∵AB=AD,∠B=∠ADF,
∴,
,
,
,
,
,
,
,
,
.
【点睛】
本题考查了全等三角形的判定和性质,正方形的性质以及翻折变换,是一道综合型的题目,难度不大,而证明三角形的全等是解题的关键.
山东省烟台市福山区2023-2024学年八年级下学期期末数学试题: 这是一份山东省烟台市福山区2023-2024学年八年级下学期期末数学试题,共11页。试卷主要包含了若,则的值为,下列方程中有实数根的是等内容,欢迎下载使用。
山东省烟台市福山区2023-2024学年八年级下学期期中数学试题(原卷版+解析版): 这是一份山东省烟台市福山区2023-2024学年八年级下学期期中数学试题(原卷版+解析版),文件包含山东省烟台市福山区2023-2024学年八年级下学期期中数学试题原卷版docx、山东省烟台市福山区2023-2024学年八年级下学期期中数学试题解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
2024年山东省烟台市福山区一模数学试题: 这是一份2024年山东省烟台市福山区一模数学试题,共21页。试卷主要包含了答题前,务必用0,非选择题必须用用0,某中学开展“读书节活动”等内容,欢迎下载使用。