青岛版3.4 直线与圆的位置关系教学设计及反思
展开【教学目标】
(一)知识与能力
1.经历探索直线与圆位置关系的过程。
2.通过观察得出“圆心到直线的距离d和半径r的数量关系”与“直线和圆的位置关系”的对应与等价,从而实现位置关系与数量关系的相互转化。
(二)过程与方法
归纳总结出直线与圆的三种位置关系。
(三)情感态度价值观
培养学生的探索能力。
【教学重点】
经历探索直线与圆位置关系的过程,理解直线与圆的三种位置关系。
【教学难点】
经历探索直线与圆的位置关系的过程,归纳总结出直线与圆的三种位置关系。
【课时安排】
2课时
【第一课时】
【第二课时】
教学过程
教师活动
学生活动
一、激情导入
二、认定目标
三、自主探究
四、激情互动
回顾点和圆的位置关系有哪些?
师生点评:点和圆的位置关系有三种,即点在圆上、点在圆内和点在圆外.也可以把点与圆心的距离和半径作比较,若距离大于半径在圆外,等于半径在圆上,小于半径在圆内。
出示学习目标
自学导航
教师示范让学生画出圆,进而用笔代表直线平移逐个探索。
教师结合学生观察总结:直线和圆有三种位置关系,如下图:
1.概念识记:
当直线与圆相切时(即直线和圆有唯一公共点),这条直线叫做圆的切线。
当直线与圆有两个公共点时,叫做直线和圆相交。
当直线与圆没有公共点时,叫做直线和圆相离。
因此,从直线与圆有公共点的个数可以断定是哪一种位置关系。
2.教师引导学生推导如何用点到直线的距离d和半径r之间的关系来确定三种位置关系?
教师结合学生汇报总结:如上图中,圆心O到直线l的距离为d,圆的半径为r,当直线与圆相交时,d<r;当直线与圆相切时,d=r;当直线与圆相离时,d>r;判断直线与圆的位置关系有两种方法.一种是从直线与圆的公共点的个数来断定;一种是用d与r的大小关系来断定。
指导生互动交流,解决生自学中的困惑问题
点评:
1.当直线与圆有唯一公共点时,这时直线与圆相切;
当直线与圆有两个公共点时,这时直线与圆相交;
当直线与圆没有公共点时,这时直线与圆相离。
2.直线与圆相切 d=r
直线与圆相交 d
学生回顾、回答
结合图形再认识
一生口述目标,其余生静听、领会
画图操作观察
独立思考、交流汇报。
学生动手操作量出同弧所对的圆心角与圆周角。
学生独立思考同弧所对的圆心角与圆周角的关系,
结合图形理解识记。
感受即是性质还是判定。
学生画图观察分析
总结交流汇报
学生由画图体会
感悟半径、距离规律
识记两种判定方法
组内交流自学中的困惑问题,全组达成一致意见。
有困惑的组由科代表提出本组困惑问题,寻求其他组帮助,各组选派代表说明解法。
师生互动
结合图形识记
结合图形给出
学生思考后口答
生回顾浅谈收获
教学反思
本节重点是直线和圆有三种位置关系.多数学生能结合画图观察理解,结合图形准确判断,但少数学生清楚思路但计算能力不好,应用意识不强,不能举出生活中实例。
教学过程
教师活动
学生活动
一、激情导入
二、认定目标
三、自主探究
四、激情互动
学生回顾直线和圆的位置关系有哪些?
师生点评:直线和圆的位置关系有三种,即相离、相切、相交 判断直线与圆的位置关系有两种方法。一种是从直线与圆的公共点的个数来断定;一种是用d与r的大小关系来断定。大于半径在圆外,等于半径在圆上,小于半径在圆内。
出示学习目标
自学导航
1.教师示范让学生画出圆和半径OP,让学生尝试过点P画圆的切线,并说出为什么。
2.教师结合学生回答总结:
相切的依据:d=r
判定:经过半径的外端,并且垂直于半径的直线是圆的切线。
强调:外端、垂直;出示判断如经过半径的外端,的直线是圆的切线,垂直于半径的直线是圆的切线。
规范格式:∵OA⊥l
∴直线l是圆的切线
3.教师出示探究问题:
直线CD与⊙O相切于点A,直径AB与直线CD有怎样的位置关系?说一说你的理由。
指导生互动交流,解决生自学中的困惑问题。
点评:性质: 圆的切线垂直于过切点的直径.
小结:指导生小结
学生回顾、回答
结合图形再认识
一生口述目标,其余生静听、领会
画图操作尝试思考
独立思考、交流汇报
体会相切依据
结合图形识记判定
独立思考、交流汇报
组内交流自学中的困惑问题,全组达成一致意见。
有困惑的组由科代表提出本组困惑问题,寻求其他组帮助,各组选派代表说明解法。
师生互动
结合图形识记
教学反思
本节重点是切线的判定和性质解决证相切和知相切.多数学生能结合画图观察理解,结合图形准确体会,但少数学生应用意识不强,思路不清。
青岛版九年级上册第3章 对圆的进一步认识3.4 直线与圆的位置关系教学设计: 这是一份青岛版九年级上册第3章 对圆的进一步认识3.4 直线与圆的位置关系教学设计,共3页。教案主要包含了学习目标,学习重点,学习难点,教学方法,教学准备,学习过程,作业布置等内容,欢迎下载使用。
初中数学青岛版九年级上册3.2 确定圆的条件教案设计: 这是一份初中数学青岛版九年级上册3.2 确定圆的条件教案设计,共11页。教案主要包含了课时安排,第一课时,第二课时等内容,欢迎下载使用。
数学九年级上册3.7 正多边形与圆教学设计: 这是一份数学九年级上册3.7 正多边形与圆教学设计,共4页。