所属成套资源:2021年中考数学 模拟试卷10套( A3版打印版含答案)
- 2021年中考数学 模拟试卷十( 含答案 ) 试卷 0 次下载
- 2021年中考数学 模拟试卷七( 含答案 ) 试卷 0 次下载
- 2021年中考数学 模拟试卷九( 学生版 ) 试卷 0 次下载
- 2021年中考数学 模拟试卷五( 含答案 ) 试卷 2 次下载
- 2021年中考数学 模拟试卷八 试卷 0 次下载
2021年中考数学 模拟试卷六( 含答案 )
展开
这是一份2021年中考数学 模拟试卷六( 含答案 ),共4页。
中考数学 模拟试卷六一、选择题1.﹣2019的相反数是( )A.2019 B.﹣2019 C. D.﹣2.剪纸是我国传统的民间艺术,下列剪纸作品中,轴对称图形是( )3.如图是由5个大小相同的小正方体摆成的几何体,它的俯视图是( )A. B. C. D.4.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )A. B. C. D.5.如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为( )A.45° B.48° C.50° D.58°6.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为( )A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b7.下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是( )A.图象经过第一、二、四象限 B.y随x的增大而减小 C.图象与y轴交于点(0,b) D.当x>﹣时,y>08.下列图形为正多边形的是( )A. B. C. D.9.如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D,连接BD,BC,且AB=10,AC=8,则BD的长为( )A.2 B.4 C.2 D.4.810.小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是( )A.1 B.2 C.3 D.411.计算﹣a﹣1的正确结果是( )A.﹣ B. C.﹣ D.12.小飞研究二次函数y=﹣(x﹣m)2﹣m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=﹣x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当﹣1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.其中错误结论的序号是( )A.① B.② C.③ D.④二、填空题13.如图,直线l∥m,将含有45°角的三角形板ABC的直角顶点C放在直线m上,若∠1=30°,则∠2= .14.数据3,4,10,7,6的中位数是 .15.计算_______.16.设a、b、c是△ABC的三边,化简|a-b-c|+|b-c-a|+|c+a-b|= .17.如图,斜边长12cm,∠A=30°的直角三角尺ABC绕点C顺时针方向旋转90°至△A′B′C的位置,再沿CB向左平移使点B′落在原三角尺ABC的斜边AB上,则三角尺向左平移的距离为 cm.(结果保留根号)18.如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为 . 三、解答题19.计算:|﹣6|﹣+(1﹣)0﹣(﹣3).20.如图,在△ABC中,∠B=90°,AB=15,AC=17,D是AC的中点,过点D作DE⊥BC,交BC于点E,连接AE,已知DE=7.5.(1)求CE的长度;(2)求△ABE的面积;(3)求AE的长度. 21.某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上的有 人;(2)表中m的值为 ;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数. 22.某商店需要购进A、B两种商品共160件,其进价和售价如表: AB进价(元/件)1535售价(元/件)2045(1)当A、B两种商品分别购进多少件时,商店计划售完这批商品后能获利1100元;(2)若商店计划购进A种商品不少于66件,且销售完这批商品后获利多于1260元,请你帮该商店老板预算有几种购货方案?获利最大是多少元? 23.如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD、BC分别交于点M和点N.(1)请你判断OM和ON的数量关系,并说明理由;(2)过点D作DE∥AC交BC的延长线于点E,当AB=6,AC=8时,求△BDE的周长. 24.如图,在平面直角坐标系中,正六边形ABCDEF的对称中心P在反比例函数y= (k>0,x>0)的图象上,边CD在x轴上,点B在y轴上,已知CD=2.(1)点A是否在该反比例函数的图象上?请说明理由;(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标;(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程. 四、综合题25.如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是的中点,则DF的长为 ;②取的中点H,当∠EAB的度数为 时,四边形OBEH为菱形. 26.如图,在平面直角坐标系中,边长为1的正方形ABCD的顶点A在直线y=2x+4上,点B在第二象限,C,D两点均在x轴上,且点C在点D的左侧,抛物线y=﹣(x﹣m)2+n的顶点P在直线y=2x+4上运动,且这条抛物线交y轴于点E.(1)写出A,C两点的坐标;(2)当抛物线y=﹣(x﹣m)2+n经过点C时,求抛物线所对应的函数表达式;(3)当点E在AC所在直线上时,求m的值;(4)当点E在x轴上方时,连接CE,DE,当△CDE的面积随m的增大而增大时,直接写出m的取值范围. 参考答案1.答案为:A.2.答案为:D.3.答案为:D.4.答案为:B.5.答案为:B.6.B7.答案为:D.8.答案为:D.9.答案为:C.10.答案为:C.11.答案为:A.12.答案为:C.13.答案为:15°.14.答案为:6.15.答案为: 16.答案为:a-b+3c 17.答案为:6﹣2.18.答案为:2.19.原式=6﹣3+1+3=7;20.解:(1)∵∠B=90°,AB=15,AC=17,∴BC=8,∵D是AC的中点,过点D作DE⊥BC,∠B=90°,∴DE∥AB,则DE平分BC,∴EC=BE=0.5BC=4;(2)△ABE的面积为:0.5×BE×AB=0.5×4×15=30;(3)在Rt△ABE中,AE===. 21.解:(1)在这次测试中,七年级在80分以上的有15+8=23人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为78、79,∴m==77.5,故答案为:77.5;(3)甲学生在该年级的排名更靠前,∵七年级学生甲的成绩大于中位数78分,其名次在该班25名之前,八年级学生乙的成绩小于中位数78分,其名次在该班25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为400×=224(人). 22.解:(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得:.解得:.答:甲种商品购进100件,乙种商品购进60件.(2)设甲种商品购进a件,则乙种商品购进(160﹣a)件.根据题意得.解不等式组,得66≤a<68.∵a为非负整数,∴a取66,67.∴160﹣a相应取94,93.方案一:甲种商品购进66件,乙种商品购进94件.方案二:甲种商品购进67件,乙种商品购进93件.最大获利为;66×5+94×10=1270元;答:有两种购货方案,其中获利最大的是方案一. 23.解:(1)∵四边形ABCD是菱形,∴AD∥BC,AO=OC,∴,∴OM=ON.(2)∵四边形ABCD是菱形,∴AC⊥BD,AD=BC=AB=6,∴BO==2,∴,∵DE∥AC,AD∥CE,∴四边形ACED是平行四边形,∴DE=AC=8,∴△BDE的周长是:BD+DE+BE=BD+AC+(BC+CE)=4+8+(6+6)=20即△BDE的周长是20.24.解:(1)过点P作x轴垂线PG,连接BP,∵P是正六边形ABCDEF的对称中心,CD=2,∴BP=2,G是CD的中点,∴PG=,∴P(2,),∵P在反比例函数y=上,∴k=2,∴y=,由正六边形的性质,A(1,2),∴点A在反比例函数图象上;(2)D(3,0),E(4,),设DE的解析式为y=mx+b,∴,∴,∴y=x﹣3,联立方程解得x=,∴Q点横坐标为;(3)E(4,),F(3,2),将正六边形向左平移两个单位后,E(2,),F(1,2),则点E与F都在反比例函数图象上;25.解:(1)证明:如图1,∵BA=BC,∠ABC=90°,∴∠BAC=45°∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠DAF+∠BGD=∠DBG+∠BGD=90°∴∠DAF=∠DBG∵∠ABD+∠BAC=90°∴∠ABD=∠BAC=45°∴AD=BD∴△ADF≌△BDG(ASA);(2)①如图2,过F作FH⊥AB于H,∵点E是的中点,∴∠BAE=∠DAE∵FD⊥AD,FH⊥AB∴FH=FD∵=sin∠ABD=sin45°=,∴,即BF=FD∵AB=4,∴BD=4cos45°=2,即BF+FD=2,(+1)FD=2∴FD==4﹣2故答案为.②连接OE,EH,∵点H是的中点,∴OH⊥AE,∵∠AEB=90°∴BE⊥AE∴BE∥OH∵四边形OBEH为菱形,∴BE=OH=OB=AB∴sin∠EAB==∴∠EAB=30°.故答案为:30° 26.解:(1)∵正方形的边长为1,∴点A的纵坐标为1.∵将y=1代入y=2x+4得:2x+4=1,解得;x=﹣1.5,∴A(﹣1.5,1).∴D(﹣1.5,0)∵CD=1,∴C(-2.5,0)(2)∵抛物线y=﹣(x﹣m)2+n的顶点P在直线y=2x+4上运动,∴n=2m+4.∴抛物线的解析式为y=﹣(x﹣m)2+2m+4.∵抛物线经过点C(﹣2.5,0),∴(﹣2.5﹣m)2+2m+4=0.解得:m1=m2=﹣1.5.∴n=2×(﹣1.5)+4=1.∴抛物线的解析式为y=﹣(x+1.5)2+1(y=﹣x2﹣3x﹣).(3)∵抛物线y=﹣(x﹣m)2+n的顶点P在直线y=2x+4上运动,∴n=2m+4.∴抛物线的解析式为y=﹣(x﹣m)2+2m+4.∵将x=0代入得:y=﹣m2+2m+4.∴E(0,﹣m2+2m+4).设直线AC的解析式为y=kx+b.∵将A(﹣1.5,1、C(2.5,0)代入得:,解得k=1,b=2.5,∴直线AC的解析式为y=x+2.5.∵点E在直线AC上,∴﹣m2+2m+4=2.5.解得:m1=1﹣,m2=1+.(4)S△CDE=DC•EO=﹣m2+m+2,∵m=﹣=1,a=﹣<0,∴当m≤1时,y随x的增大而增大.令﹣m2+m+2=0,解得:m1=1﹣,m2=1+(舍去).∵点E在x轴的上方,∴m>1﹣.∴m的范围是1﹣<m≤1.
相关试卷
这是一份中考数学适应性模拟试卷(六) (含答案),共25页。试卷主要包含了选择题,填空题,简答题等内容,欢迎下载使用。
这是一份2023年广东省广州市中考数学模拟试卷(六)(含答案),共13页。
这是一份2023年山东省临沂市中考数学模拟试卷(六)(含答案),共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。