- 七年级数学湘教版下册4.2平移教案 教案 3 次下载
- 七年级数学湘教版下册4.3平行线的性质教案 教案 3 次下载
- 七年级数学湘教版下册4.5垂线教案 教案 3 次下载
- 七年级数学湘教版下册4.6两条平行线间的距离教案 教案 3 次下载
- 七年级数学湘教版下册5.1轴对称教案 教案 3 次下载
初中数学湘教版七年级下册4.4 平行线的判定优秀教案及反思
展开4.4平行线的判定(1)
教学目标
1、了解推理、证明的基本格式,掌握平行线判定方法的推理过程。
2、学习简单的推理论证说理的方法。
3、通过简单的推理过程的学习,培养学生进行数学推理的习惯和方法,同时培养提高学生“观察-分析-推理-论证”的能力。
教学重点
平行线判定方法1的推理过程及几何解题的基本格式
教学难点
判定定理的形成过程中逻辑推理及书写格式。
教学过程
一、复习引入
1、叙述平行线的性质定理1-3,借助图形用数学语言表达。
2、对顶角相等是成立的,反过来“相等的角是对顶角”也成立吗?
那么我们知道了“两直线平行,同位角相等”是成立的,反过来“同位角相等,两直线平行”是否还成立呢?这就是我们今天所要学习的内容。
二、探究新知
1、观察。P64教材的观察 学生动手量一量,再回答提出的问题。
2、探究
“两直线平行,同位角相等”是成立的,反过来“同位角相等,两直线平行”是否还成立呢?
如下图,两条直线AB、CD被第三条直线EF所截,有一对同位角相等,即
∠END=∠EMB,那么AB与CD平行吗?
过N作直线m平行于AB,则
∠ENG=∠EMB,由于∠END=∠EMB
因此,∠ENG=∠END,从而直线m与CD重合,因此CD∥AB。
m
图a 图b
判定方法1 两直线被第三条直线所截,如果有一对同位角相等,那么这两条直线平行。
3、新知应用
P64的例1 如图,已知∠1+∠2=180°,AB与CD平行吗?为什么?
分析:如果要得到平行,只要证明∠2=∠3就可以了。
解:因为∠2与∠1的补角,而∠3是∠1的补角,所以
∠2=∠3,从而AB∥CD(有一对同位角相等,两直线平行)
P64例2如图,已知∠1=∠2,说明为什么∠4=∠5。
分析:如果∠4=∠5,那么要证明直线a与直线b平行,
而要证明直线a与直线b平行,就要证明∠1=∠3,
而∠2=∠3,∠1=∠2,所以∠1=∠3。
解:因为∠1=∠2(已知条件),∠2=∠3(对顶角相等),
所以 ∠1=∠3。
从而, a∥b(同位角相等,两直线平行)
因此,∠4=∠5(两直线平行,同位角相等)。
三、小结和练习
1、练习P65的练习1、2小题
2、小结:今天讲的内容是平行线的判定方法,而上节课学习的是平行线的性质定理,它们的条件和结论正好相反,也可以说是互逆的命题。注意它们各自的使用方法,不要用反了这两条定理。
四、布置作业
P68 A组题 第4小题
后记:
4.4平行线的判定(2)
教学目标
1、进一步掌握推理、证明的基本格式,掌握平行线判定方法的推理过程。
2、学习简单的推理论证说理的方法。
3、通过简单的推理过程的学习,培养学生进行数学推理的习惯和方法,同时培养提高学生“观察-分析-推理-论证”的能力。
教学重点
平行线判定方法2和判定方法3的推理过程及几何解题的基本格式
教学难点
判定定理的形成过程中逻辑推理及书写格式。
教学过程
一、复习引入
1、叙述平行线的判定方法1
2、结合图形用数学语言叙述平行线的判定方法1。
3、我们学习平行线的性质定理时,有几条定理?那么两条直线平行的判定方法除了方法外,是否还有其他的方法呢?
二、探究新知
1、如下图,两条直线a、b被第三条直线c所截,有一对内错角相等,即
∠1=∠2,那么a与b平行吗?
解:因为∠1=∠2(已知),∠1=∠3(对顶角相等)
所以 ∠2=∠3(等量代换)
所以 a∥b(同位角相等,两直线平行)
2、如下图,两条直线a、b被第三条直线c所截,有一对同旁内角互补,即
∠1+∠2=180°,那么a与b平行吗?
解:因为∠1+∠2=180°(已知),∠1+∠3=180°(邻补角的概念)
所以 ∠2=∠3(等式的性质)
所以 a∥b(同位角相等,两直线平行)
3、归纳平行线的判定方法2和判定方法3
平行线的判定方法2 两直线被第三条直线所截,有一对内错角相等,那么这两条直线平行。
平行线的判定方法3 两直线被第三条直线所截,有一对同旁内角互补,那么这两条直线平行。
4、归纳所学的三条判定方法的简单表述形式:
同位角相等,两直线平行。内错角相等,两直线平行。同六内角互补,两直线平行。
5、P66做一做
用两个相同的三角形,可以拼成一个四边形,拼成的四边形的对边互相平行吗?
6、讲解P66的例题 如图已知AB∥CD,∠ABC=∠ADC。问AD∥BC吗?
解:因为AB∥CD(已知)
所以 ∠1=∠2(两直线平行,内错角相等)
又 因为 ∠ABC=∠ADC (已知)
所以 ∠ABC-∠1=∠ADC-∠2
即 ∠4=∠3(等式的性质)
所以 AD∥BC(内错角相等,两直线平行)。
三、小结与练习
1、练习P66 1至3小题
2、小结:三条判定方法的使用及性质定理的应用,注意它们的题设和结论。
四、布置作业 P69 B组 2、3小题
后记:
初中数学4.4 平行线的判定教案设计: 这是一份初中数学<a href="/sx/tb_c95253_t8/?tag_id=27" target="_blank">4.4 平行线的判定教案设计</a>,共4页。教案主要包含了情景导入,教学新知,课堂练习,课堂总结,作业布置等内容,欢迎下载使用。
初中数学湘教版七年级下册4.4 平行线的判定教学设计: 这是一份初中数学湘教版七年级下册<a href="/sx/tb_c95253_t8/?tag_id=27" target="_blank">4.4 平行线的判定教学设计</a>,共4页。教案主要包含了情景导入,教学新知,课堂练习,课堂总结,作业布置等内容,欢迎下载使用。
初中数学湘教版七年级下册4.4 平行线的判定教案设计: 这是一份初中数学湘教版七年级下册4.4 平行线的判定教案设计,共5页。教案主要包含了选择题,填空题,解答题等内容,欢迎下载使用。