|学案下载
终身会员
搜索
    上传资料 赚现金
    平行线的判定(提高)知识点及习题学案
    立即下载
    加入资料篮
    平行线的判定(提高)知识点及习题学案01
    平行线的判定(提高)知识点及习题学案02
    平行线的判定(提高)知识点及习题学案03
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学湘教版七年级下册4.4 平行线的判定学案设计

    展开
    这是一份初中数学湘教版七年级下册4.4 平行线的判定学案设计,共9页。学案主要包含了学习目标,要点梳理,典型例题,总结升华,答案与解析,思路点拨,巩固练习等内容,欢迎下载使用。

    1.熟练掌握平行线的画法;
    2.掌握平行公理及其推论;
    3.掌握平行线的判定方法,并能运用“平行线的判定方法”,判定两条直线是否平行.
    【要点梳理】
    要点一、平行线的画法及平行公理
    1.平行线的画法
    用直尺和三角板作平行线的步骤:
    ①落:用三角板的一条斜边与已知直线重合.
    ②靠:用直尺紧靠三角板一条直角边.
    ③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.
    ④画:沿着这条斜边画一条直线,所画直线与已知直线平行.
    2.平行公理及推论
    平行公理:经过直线外一点,有且只有一条直线与这条直线平行.
    推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
    要点诠释:
    (1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.
    (2)公理中“有”说明存在;“只有”说明唯一.
    (3)“平行公理的推论”也叫平行线的传递性.
    要点二、平行线的判定
    判定方法1:同位角相等,两直线平行.如上图,几何语言:
    ∵ ∠3=∠2
    ∴ AB∥CD(同位角相等,两直线平行)
    判定方法2:内错角相等,两直线平行.如上图,几何语言:
    ∵ ∠1=∠2
    ∴ AB∥CD(内错角相等,两直线平行)
    判定方法3:同旁内角互补,两直线平行.如上图,几何语言:
    ∵ ∠4+∠2=180°
    ∴ AB∥CD(同旁内角互补,两直线平行)
    要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.
    【典型例题】
    类型一、平行公理及推论
    1.在同一平面内,下列说法:(1)过两点有且只有一条直线;(2)两条直线有且只有一个公共点;(3)过一点有且只有一条直线与已知直线垂直;(4)过一点有且只有一条直线与已知直线平行. 其中正确的个数为:( ) .
    A.1个 B.2个 C.3个 D.4个
    【答案】B
    【解析】正确的是:(1)(3).
    【总结升华】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意区分不同表述之间的联系和区别.
    举一反三:
    【变式】下列说法正确的个数是 ( ) .
    (1)直线a、b、c、d,如果a∥b、c∥b、c∥d,则a∥d.
    (2)两条直线被第三条直线所截,同旁内角的平分线互相垂直.
    (3)两条直线被第三条直线所截,同位角相等.
    (4)在同一平面内,如果两直线都垂直于同一条直线,那么这两直线平行.
    A.1个 B .2个 C.3个 D.4个
    【答案】B
    2.证明:平行于同一直线的两条直线平行.
    【答案与解析】
    已知:如图,.求证:.
    证明:假设直线a与直线b不平行,则直线a与直线b相交,设交点为A,如图.

    则过直线c外一点A有两条直线a、b与直线c平行,
    这与平行公理矛盾,所以假设不成立.

    【总结升华】本题采用的是“反证法”的证明方法,反证法证题的一般步骤:
    第一步,反设:作出与求证结论相反的假设;
    第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;
    第三步,结论:说明反设不成立,从而肯定原命题成立.
    类型二、平行线的判定
    3. 如图,给出下列四个条件:(1)AC=BD;(2)∠DAC=∠BCA;(3)∠ABD=∠CDB;(4)∠ADB=∠CBD,其中能使AD∥BC的条件有 ( ).
    A.(1)(2) B.(3)(4) C.(2)(4) D.(1)(3)(4)
    【思路点拨】欲证AD∥BC,在图中发现AD、BC被一直线所截,故可按同位角相等、内错角相等、同旁内角互补,两直线平行补充条件.
    【答案】C
    【解析】从分解图形入手,即寻找AD、BC的截线.
    【总结升华】从题目的结论出发分析所要说明的结论能成立,必须具备的是哪些条件,再看这些条件成立又需具备什么条件,直到追溯到已知条件为止.
    举一反三:
    【变式】一个学员在广场上驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )
    A.第一次向左拐30°,第二次向右拐30°
    B.第一次向右拐50°,第二次向左拐130°
    C.第一次向右拐50°,第二次向右拐130°
    D.第一次向左拐50°,第二次向左拐130°
    【答案】A
    提示:“方向相同”有两层含义,即路线平行且方向相同,在此基础上准确画出示意图.
    图B显然不同向,因为路线不平行.
    图C中,∠1=180°-130°=50°,路线平行但不同向.
    图D中,∠1=180°-130°=50°,路线平行但不同向.
    只有图A路线平行且同向,故应选A.
    4. 如图所示,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°.试说明AB∥EF的理由.
    【思路点拨】利用辅助线把AB、EF联系起来.
    【答案与解析】
    解法1:如图所示,在∠BCD的内部作∠BCM=25°,在∠CDE的内部作∠EDN=10°.
    ∵ ∠B=25°,∠E=10°(已知),
    ∴ ∠B=∠BCM,∠E=∠EDN(等量代换).
    ∴ AB∥CM,EF∥DN(内错角相等,两直线平行).
    又∵ ∠BCD=45°,∠CDE=30°(已知),
    ∴ ∠DCM=20°,∠CDN=20°(等式性质).
    ∴ ∠DCM=∠CDN(等量代换).
    ∴ CM∥DN(内错角相等,两直线平行).
    ∵ AB∥CM,EF∥DN(已证),
    ∴ AB∥EF(平行线的传递性).
    解法2:如图所示,分别向两方延长线段CD交EF于M点、交AB于N点.
    ∵ ∠BCD=45°,∴ ∠NCB=135°.
    ∵ ∠B=25°,
    ∴ ∠CNB=180°-∠NCB-∠B=20°(三角形的内角和等于180°).
    又∵ ∠CDE=30°,∴ ∠EDM=150°.
    又∵ ∠E=10°,
    ∴ ∠EMD=180°-∠EDM-∠E=20°(三角形的内角和等于180°).
    ∴ ∠CNB=∠EMD(等量代换).
    所以AB∥EF(内错角相等,两直线平行).
    【总结升华】判定两条直线平行的方法有四种,选择哪种方法要根据问题提供的条件来灵活选取.
    举一反三:
    【高清课堂:平行线及判定403102经典例题2 】
    【变式】已知,如图,BE平分ABD,DE平分CDB,且1与2互余,试判断直线AB、CD的位置关系,请说明理由.
    【答案】
    解:AB∥CD,理由如下:
    ∵ BE平分∠ABD,DE平分∠CDB,
    ∴ ∠ABD=2∠1,∠CDB=2∠2.
    又∵ ∠1+∠2=90°,
    ∴ ∠ABD+∠CDB=180°.
    ∴ AB∥CD(同旁内角互补,两直线平行).
    ADDIN CNKISM.UserStyle平行线的判定(提高)巩固练习
    【巩固练习】
    一、选择题
    1.下列说法中正确的有( ) .
    ①一条直线的平行线只有一条.
    ②过一点与已知直线平行的直线只有一条.
    ③因为a∥b,c∥d,所以a∥d.
    ④经过直线外一点有且只有一条直线与已知直线平行.
    A.1个 B.2个 C.3个 D.4个
    2.如果两个角的一边在同一直线上,另一边互相平行,则这两个角( ) .
    A.相等 B.互补 C.互余 D.相等或互补
    3.如图,能够判定DE∥BC的条件是 ( ) .
    A.∠DCE+∠DEC=180° B.∠EDC=∠DCB
    C.∠BGF=∠DCB D.CD⊥AB,GF⊥AB
    4.一辆汽车在广阔的草原上行驶,两次拐弯后,行驶的方向与原来的方向相同,那么这两次拐弯的角度可能是 ( ) .
    A.第一次向右拐40°,第二次向右拐140°.
    B.第一次向右拐40°,第二次向左拐40°.
    C.第一次向左拐40°,第二次向右拐140°.
    D.第一次向右拐140°,第二次向左拐40°.
    5.如图所示,下列条件中,不能推出AB∥CE成立的条件是 ( ) .
    A.∠A=∠ACE B.∠B=∠ACE C.∠B=∠ECD D.∠B+∠BCE=180°
    6.( 绍兴)学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图,(1)—(4)):
    从图中可知,小敏画平行线的依据有( ).
    ①两直线平行,同位角相等.②两直线平行,内错角相等.③同位角相等,两直线平行.
    ④内错角相等,两直线平行.
    A.①② B. ②③ C. ③④ D. ④①
    二、填空题
    7. 在同一平面内的三条直线,它们的交点个数可能是________.
    8.如图,DF平分∠CDE,∠CDF=55°,∠C=70°,则________∥________.
    9.规律探究:同一平面内有直线a1,a2,a3…,a100,若a1⊥a2,a2∥a3,a3⊥a4…,按此规律,a1和a100的位置是________.
    10.已知两个角的两边分别平行,其中一个角为40°,则另一个角的度数是
    11.直线同侧有三点A、B、C,如果A、B两点确定的直线 与B、C两点确定的直线都与平行,则A、B、C三点 ,其依据是
    12. 如图,AB⊥EF于点G,CD⊥EF于点H,GP平分∠EGB,HQ平分∠CHF,则图中互相平行的直线有 .
    三、解答题
    13.如图,∠1=60°,∠2=60°,∠3=100°,要使AB∥EF,∠4应为多少度?说明理由.
    14.小敏有一块小画板(如图所示),她想知道它的上下边缘是否平行,而小敏身边只有一个量角器,你能帮助她解决这一问题吗?
    15.如图,把一张长方形纸条ABCD沿AF折叠,已知∠ADB=20°,那么∠BAF为多少度时,才能使AB′∥BD?
    16.如图所示,由∠1=∠2,BD平分∠ABC,可推出哪两条线段平行,写出推理过程,如果推出另两条线段平行,则应将以上两条件之一作如何改变?
    【答案与解析】
    一、选择题
    1. 【答案】A;
    【解析】只有④正确,其它均错.
    2. 【答案】D;
    3. 【答案】B;
    【解析】内错角相等,两直线平行.
    4. 【答案】B;
    5. 【答案】B;
    【解析】∠B和∠ACE不是两条直线被第三条直线所截所得到的角.
    6. 【答案】C;
    【解析】解决本题关键是理解折叠的过程,图中的虚线与已知的直线垂直,过点P的折痕与虚线垂直.
    二、填空题
    7. 【答案】0或1或2或3个;
    8. 【答案】BC, DE;
    【解析】∠CFD=180°-70°-55°=55°,而∠FDE=∠CDF=55°,所以∠CFD=∠FDE.
    9. 【答案】a1∥a100;
    【解析】为了方便,我们可以记为a1⊥a2∥a3⊥a4∥a5⊥a6∥a7⊥a8∥a9⊥a10…∥a97⊥a98∥a99⊥a100,因为a1⊥a2∥a3,所以a1⊥a3,而a3⊥a4,所以a1∥a4∥a5.同理得a5∥a8 ∥a9,a9∥a12 ∥a13,…,接着这样的规律可以得a1∥a97∥a100,所以a1∥a100.
    10.【答案】 40°或140°;
    11.【答案】共线,平行公理;
    【解析】此题考查是平行公理,它是论证推理的基础,应熟练应用.
    12.【答案】AB∥CD,GP∥HQ;
    【解析】
    理由:∵ AB⊥EF,CD⊥EF.∴ ∠AGE=∠CHG=90°.∴ AB∥CD.
    ∵ AB⊥EF.∴ ∠EGB=∠2=90°.∴ GP平分∠EGB.
    ∴ ∠1=EGB=45°.
    ∴ ∠PGH=∠1+∠2=135°.
    同理∠GHQ=135°,∴ ∠PGH=∠GHQ.
    ∴ GP∥HQ.
    三、解答题
    13. 【解析】
    解:∠4=100°.理由如下:
    ∵ ∠1=60°,∠2=60°,
    ∴ ∠1=∠2,∴ AB∥CD
    又∵∠3=∠4=100°,
    ∴ CD∥EF,∴ AB∥EF.
    14.【解析】
    解:如图所示,用量角器在两个边缘之间画一条线段MN,用量角器测得∠1=50°,
    ∠2=50°,因为∠1=∠2,所以由内错角相等,两直线平行,可知画板的上下边缘是平行的.
    15. 【解析】
    解:要使AB′∥BD,只要∠B′AD=∠ADB=20°,
    ∠B′AB=∠BAD+∠B′AD=90°+20°=110°.
    ∴∠BAF=∠B′AB=×110°=55°.
    16.【解析】
    解:可推出AD∥BC.∵ BD平分∠ABC(已知).
    ∴ ∠1=∠DBC(角平分线定义).
    又∵ ∠1=∠2(已知),∴ ∠2=∠DBC(等量代换).
    ∴ AD∥BC(内错角相等,两直线平行).
    把∠1=∠2改成∠DBC=∠BDC.
    相关学案

    初中数学北师大版八年级上册3 平行线的判定导学案: 这是一份初中数学北师大版八年级上册3 平行线的判定导学案,文件包含命题证明及平行线的判定定理提高知识讲解doc、命题证明及平行线的判定定理提高巩固练习doc等2份学案配套教学资源,其中学案共11页, 欢迎下载使用。

    初中4.3 平行线的性质导学案: 这是一份初中4.3 平行线的性质导学案,共13页。学案主要包含了学习目标,要点梳理,典型例题,总结升华,思路点拨,答案与解析,巩固练习等内容,欢迎下载使用。

    2021学年4.4 平行线的判定导学案: 这是一份2021学年4.4 平行线的判定导学案,共8页。学案主要包含了学习目标,要点梳理,典型例题,总结升华,思路点拨,答案与解析,巩固练习等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map