![【精品 讲义】中考数学二轮复习 专题复习 第6讲 应用题第1页](http://m.enxinlong.com/img-preview/2/3/5905723/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【精品 讲义】中考数学二轮复习 专题复习 第6讲 应用题第2页](http://m.enxinlong.com/img-preview/2/3/5905723/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【精品 讲义】中考数学二轮复习 专题复习 第6讲 应用题第3页](http://m.enxinlong.com/img-preview/2/3/5905723/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:中考数学二轮复习 精品讲义(适合教培行业)
- 【精品 讲义】中考数学二轮复习 专题复习 第4讲 简单几何证明 教案 7 次下载
- 【精品 讲义】中考数学二轮复习 专题复习 第5讲 选择填空压轴题 教案 6 次下载
- 考前强化分阶段训练1(数与式、方程与不等式) 试卷 10 次下载
- 考前强化分阶段训练2(函数) 试卷 9 次下载
- 考前强化分阶段训练3(几何) 试卷 6 次下载
【精品 讲义】中考数学二轮复习 专题复习 第6讲 应用题
展开
这是一份【精品 讲义】中考数学二轮复习 专题复习 第6讲 应用题,共11页。
1、熟练掌握分析解决实际问题的一般方法及步骤
2、提高分析实际问题中数量关系的能力,能熟练找出相等关系并列出方程
3、熟悉各种类型的应用题的解题思路
课前热身
1.在备战奥运会的足球赛中,有32支足球队将分成8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分.若小组赛中某队的积分为5分,则该队必是( )
2.为保护生态环境,某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米。设改变后耕地面积x平方千米,林地面积y平方千米,根据题意,列出如下四个方程组,其中正确的是( )
3.将一批490吨的货物分给甲、乙两船运输,现甲、乙两船分别运走了其任务的、,在已运走的货物中,甲船比乙船多运30吨,则分配给甲、乙两船的任务数分别是_______吨、_______吨.
4.某班54名同学参加植树,男生每人植树3棵,女生每人植树2棵,一共植树137棵,则这班男生有_________人,女生有_________人.
5.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.
(1)求该店有客房多少间?房客多少人?
(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?
导学一:二元一次方程
1.某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料在调价前每瓶各多少元?
2.小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?
3.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费。下表是该市民居民“一户一表”生活用水阶梯式计费价格表的部分信息:
(说明:① 每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费)
已知小王家2012年4月用水20吨,交水费66元,5月份用水25吨,交水费91元。
(1)求a,b的值;
(2)随着夏天的到来,用水量将增加。为了节省开支。小王计划把6月份的水费控制在不超过家庭月收入的2%,若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?
牛刀小试
1.NBA季后赛正如火如荼地进行着,詹姆斯率领的骑士队在第三场季后赛中先落后25分的情况下实现了大逆转.该场比赛中詹姆斯的技术统计数据如下表所示:
根据以上信息,求出本场比赛中詹姆斯投中2分球和3分球的个数.
2.某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵.两次共花费940元(两次购进的A、B两种花草价格均分别相同).
(1)A、B两种花草每棵的价格分别是多少元?
(2)若购买A、B两种花草共31棵,且B种花草的数量少于A种花草的数量的2倍,请你给出一种费用最省的方案,并求出该方案所需费用.
3.小明新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.
(1)两种型号的地砖各采购了多少块?
(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?
导学二:不等式
1.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:
(1)求A,B两种型号的净水器的销售单价
(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A种型号的净水器最多能采购多少台?
(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
2.某学校为了改善办学条件,计划购置一批实物投影仪和一批台式电脑,经投标,购买1台实物投影仪和2台电脑共用了11000元;购买2台实物投影仪和3台电脑共用了18000元.
(1)求购买1台实物投影仪和1台电脑各需多少元?
(2)根据该校实际情况,需购买实物投影仪和台式电脑的总数为50台,要求购买的总费用不超过180000元,该校最多能购买多少台电脑?
3.某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.
(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?
(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;
(3)小英家3月份用水24吨,她家应交水费多少元?
导学三:分式方程
1.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为( )
2.骑自相车旅行越来越受到人们的喜爱,顺风车行经营的A型车2016年4月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售比去年增加400元,若今年4月份与去年4月份卖出的A型车数量相同,则今年4月份A型车销售总额将比去年4月份销售总额增加25%.
A、B两种型号车的进货和销售价格如右表:
(1)求今年4月份A型车每辆销售价多少元(用列方程的方法解答);
(2)该车行计划5月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?
3.在我市双城同创的工作中,某社区计划对1200m2的区域进行绿化,经投标,由甲、乙两个施工队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为300m2区域的绿化时,甲队比乙队少用3天.
(1)甲、乙两施工队每天分别能完成绿化的面积是多少?
(2)设先由甲队施工x天,再由乙队施工y天,刚好完成绿化任务,求y与x的函数关系式.
(3)若甲队每天绿化费用为0.4万元,乙队每天绿化费用为0.15万元,且甲、乙两队施工的总天数不超过14天,则如何安排甲、乙两队施工的天数,使施工费用最少?并求出最少费用.
牛刀小试
1.A、B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程为( ).
2.某地充分利用当地地理优势,大力发展山村特色旅游,为推介宣传,现制作两种宣传手提袋,已知同样用6m材料制成甲种的个数比制成乙种的个数少2个,且制成一个甲种比制成一个乙种需要多用20%的材料.
(1)求制作每个甲种、乙种各用多少米材料?
(2)如果制作甲、乙两种手提袋共3000个,且甲种的数量不少于乙种数量的2倍,那么请写出所需要材料的总长度l(m)与甲种数量n(个)之间的函数关系式,并求出最少需要多少米材料?
导学四:一次函数
1.如图,A、B两地相距600km,一辆动车从A地开往B地,一辆高铁从B地开往A地,高铁先出发,一小时后,动车才出发,设动车离A地的距离为y1(km),高铁离A地的距离为y1(km)高铁出发时间为t(h),变量y1和y1之间的关系图像如图所示:
(1)根据图像,高铁和动车的速度分别是_____ ____
(2)高铁出发多少小时与动车相遇;
(3)高铁出发多长时间两车相距50km。
2.某种产品的年产量不超过1 000t,该产品的年产量(t)与费用(万元)之间的函数关系如图(1);该产品的年销售量(t)与每吨销售价(万元)之间的函数关系如图(2).若生产出的产品都能在当年销售完,则年产量为多少吨时,当年可获得7500万元毛利润?(毛利润=销售额﹣费用)
3.在汕头市区改造中,有一部分楼盘要对外销售. 某楼盘共23层,销售价格如下:第八层楼房售价为4000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,从第八层起每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120米2. 若购买者一次性付清所有房款,开发商有两种优惠方案:
方案一:降价8%,另外每套楼房赠送a元装修基金;
方案二:只降价10%,没有其他赠送.
(1)求出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数关系式;
(2)直接填写答案:老王要购买第十六层的一套楼房,他一次性付清购房款,用方案一,这套楼房总费用为__________元;当a=__________时两种优惠方案总费用相同;当a
相关教案
这是一份【精品 讲义】中考数学二轮复习 专题复习 第5讲 选择填空压轴题,共8页。
这是一份【精品 讲义】中考数学二轮复习 专题复习 第2讲 几何综合,共12页。
这是一份【精品 讲义】中考数学二轮复习 专题复习 第4讲 简单几何证明,共9页。