2020届高考数学一轮复习新课改省份专用学案:第四章第六节三角函数图象与性质的综合问题
展开第六节 三角函数图象与性质的综合问题三角函数的图象与性质是每年高考命题的热点,除考查基本问题外,还常涉及求参数范围问题,多为压轴小题;在综合问题中,常考查三角函数图象的变换和性质、三角恒等变换、零点、不等式等的交汇创新问题. 三角函数图象与性质中的参数范围问题 策略一:针对选择题特事特办,选择题中关于三角函数的图象和性质的问题是多年来高考的热点,三角函数试题常涉及函数y=Asin(ωx+φ)(ω>0,A>0)的图象的单调性、对称性、周期等问题.一般来说:(1)若函数y=Asin(ωx+φ)(ω>0,A>0)有两条对称轴x=a,x=b,则有|a-b|=+(k∈Z);(2)若函数y=Asin(ωx+φ)(ω>0,A>0)有两个对称中心M(a,0),N(b,0),则有|a-b|=+(k∈Z);(3)若函数y=Asin(ωx+φ)(ω>0,A>0)有一条对称轴x=a,一个对称中心M(b,0),则有|a-b|=+(k∈Z).策略二:研究函数在某一特定区间的单调性,若函数仅含有一个参数的时候,利用导数的正负比较容易控制,但对于函数y=Asin(ωx+φ)(ω>0,A>0)含多个参数,并且具有周期性,很难解决,所以必须有合理的等价转化方式才能解决.[典例] (2016·全国卷Ⅰ)已知函数f(x)=sin(ωx+φ),x=-为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在上单调,则ω的最大值为( )A.11 B.9C.7 D.5[思路点拨] 本题条件较多,事实上从题型特征的角度来看,若选择题的已知条件越多,那么意味着可用来排除选项的依据就越多,所谓正面求解也是在不断缩小的范围内与条件进行对比验证.[解题观摩] 法一:排除法由f=0得,-ω+φ=kπ(k∈Z),φ=kπ+ω.当ω=5时,k只能取-1,φ=,f(x)=sin,则f=-1,x=是函数图象的对称轴,符合题意;当x∈时,5x+∈,这个区间不含π(n∈Z)中的任何一个,函数f(x)在上单调,符合题意.当ω=7时,k只能取-2,φ=-,f(x)=sin,则f=-1,x=是函数图象的对称轴,符合题意;当x∈时,7x-∈,这个区间含有,则函数f(x)在上不可能单调,不符合题意.当ω=9时,k只能取-2,φ=,f(x)=sin,则f=1,x=是函数图象的对称轴,符合题意;当x∈时,9x+∈,这个区间不含π(n∈Z)中的任何一个,函数f(x)在上单调,符合题意.当ω=11时,k只能取-3,φ=-,f(x)=sin,则f=1,x=是函数图象的对称轴,符合题意;当x∈时,11x-∈,这个区间含有,则函数f(x)在上不可能单调,不符合题意.综上,ω的最大值为9.故选B.法二:特殊值法从T=,ω=2k+1(k∈N)来思考,ω需要最大值,只有从选项中的最大数开始,即从前往后一一验证:当ω=11时,T=,从单调区间的一个端点x=往前推算,靠近的单调区间为,,容易看出<<,不合题意;当ω=9时,T=,从单调区间的一个端点x=往前推算,靠近的单调区间为,,容易看出⊆,符合题意,故选B.法三:综合法由题意得且|φ|≤,则ω=2k+1,k∈Z,φ=或φ=-.对比选项,将选项值分别代入验证:若ω=11,则φ=-,此时f(x)=sin,f(x)在区间上单调递增,在区间上单调递减,不满足f(x)在区间上单调;若ω=9,则φ=,此时f(x)=sin,满足f(x)在区间上单调递减.[答案] B[题后悟通]上述法一和法二的本质是一样的,都是针对选择题的做法,逐一验证,目标明确,不同的是验证的角度.法二直接利用y=Asin(ωx+φ)(ω>0,A>0)的单调区间的特征,每个区间长度为,从靠近区间的特殊极值点开始把可能出现的单调区间找出来比较,只要“所求区间包含在单调区间内”即可. [针对训练]1.(2019·丹东教学质量监测)若函数f(x)=2sin在区间和上都是单调递增函数,则实数x0的取值范围为( )A. B.C. D.解析:选B 由2kπ-≤2x+≤2kπ+(k∈Z)得kπ-≤x≤kπ+(k∈Z),在原点附近的递增区间为-,,,因此解得≤x0≤,故选B.2.已知函数f(x)=Asin(2x+φ)-的图象在y轴上的截距为1,且关于直线x=对称,若对于任意的x∈,都有m2-3m≤f(x),则实数m的取值范围为( )A. B.[1,2]C. D.解析:选B ∵函数f(x)=Asin(2x+φ)-A>0,0<φ<的图象在y轴上的截距为1,∴Asin φ-=1,即Asin φ=.∵函数f(x)=Asin(2x+φ)-的图象关于直线x=对称, ∴2×+φ=kπ+,k∈Z,又0<φ<,∴φ=,∴A·sin =,∴A=,∴f(x)= sin-.对于任意的x∈,都有m2-3m≤f(x),∴m2-3m≤f(x)min.∵x∈,∴2x+∈,sin∈,sin2x+∈,f(x)∈,∴m2-3m≤-2,解得1≤m≤2.三角函数图象与性质的综合问题[典例] 已知函数f(x)=sin(ω>0)的图象与x轴相邻两个交点的距离为.(1)求函数f(x)的解析式;(2)若将f(x)的图象向左平移m(m>0)个单位长度得到函数g(x)的图象恰好经过点,求当m取得最小值时,g(x)在-,上的单调递增区间.[解] (1)由函数f(x)的图象与x轴相邻两个交点的距离为,得函数f(x)的最小正周期T=2×=,解得ω=1,故函数f(x)的解析式为f(x)=sin.(2)将f(x)的图象向左平移m(m>0)个单位长度得到函数g(x)=sin2(x+m)+=sin的图象,根据g(x)的图象恰好经过点,可得sin=0,即sin=0,所以2m-=kπ(k∈Z),m=+(k∈Z),因为m>0,所以当k=0时,m取得最小值,且最小值为.此时,g(x)=sin.因为x∈,所以2x+∈.当2x+∈,即x∈时,g(x)单调递增,当2x+∈,即x∈时,g(x)单调递增.综上,g(x)在区间上的单调递增区间是和.[方法技巧]三角函数图象与性质综合问题的解题策略(1)图象变换问题先根据和、差角公式、倍角公式把函数表达式变为正弦型函数y=Asin(ωx+φ)+t或余弦型函数y=Acos(ωx+φ)+t的形式,再进行图象变换.(2)函数性质问题求函数周期、最值、单调区间的方法步骤:①利用公式T=(ω>0)求周期;②根据自变量的范围确定ωx+φ的范围,根据相应的正弦曲线或余弦曲线求值域或最值,另外求最值时,根据所给关系式的特点,也可换元转化为求二次函数的最值;③根据正、余弦函数的单调区间列不等式求函数y=Asin(ωx+φ)+t或y=Acos(ωx+φ)+t的单调区间. [针对训练]设函数f(x)=sin+sin,其中0<ω<3,且f=0.(1)求ω;(2)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在上的最小值.解:(1)因为f(x)=sin+sin,所以f(x)=sin ωx-cos ωx-cos ωx=sin ωx-cos ωx==sin.因为f=0,所以-=kπ,k∈Z.故ω=6k+2,k∈Z.又0<ω<3,所以ω=2.(2)由(1)得f(x)=sin,所以g(x)=sin=sin.因为x∈,所以x-∈,当x-=-,即x=-时,g(x)取得最小值-.