2020版高考数学(文)新创新一轮复习通用版讲义:第四章第六节 三角函数图象与性质的综合问题
展开
第六节 三角函数图象与性质的综合问题
三角函数的图象与性质是每年高考命题的热点,除考查基本问题外,还常涉及求参数范围问题,多为压轴小题;在综合问题中,常考查三角函数图象的变换和性质、三角恒等变换、零点、不等式等的交汇创新问题.
三角函数图象与性质中的参数范围问题
策略一:针对选择题特事特办,选择题中关于三角函数的图象和性质的问题是多年来高考的热点,三角函数试题常涉及函数y=Asin(ωx+φ)(ω>0,A>0)的图象的单调性、对称性、周期等问题.一般来说:
(1)若函数y=Asin(ωx+φ)(ω>0,A>0)有两条对称轴x=a,x=b,则有|a-b|=+(k∈Z);
(2)若函数y=Asin(ωx+φ)(ω>0,A>0)有两个对称中心M(a,0),N(b,0),则有|a-b|=+(k∈Z);
(3)若函数y=Asin(ωx+φ)(ω>0,A>0)有一条对称轴x=a,一个对称中心M(b,0),则有|a-b|=+(k∈Z).
策略二:研究函数在某一特定区间的单调性,若函数仅含有一个参数的时候,利用导数的正负比较容易控制,但对于函数y=Asin(ωx+φ)(ω>0,A>0)含多个参数,并且具有周期性,很难解决,所以必须有合理的等价转化方式才能解决.
[典例] (2016·全国卷Ⅰ)已知函数f(x)=sin(ωx+φ),x=-为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在上单调,则ω的最大值为( )
A.11 B.9
C.7 D.5
[思路点拨] 本题条件较多,事实上从题型特征的角度来看,若选择题的已知条件越多,那么意味着可用来排除选项的依据就越多,所谓正面求解也是在不断缩小的范围内与条件进行对比验证.
[解题观摩] 法一:排除法
由f=0得,-ω+φ=kπ(k∈Z),φ=kπ+ω.
当ω=5时,k只能取-1,φ=,f(x)=sin,则f=-1,x=是函数图象的对称轴,符合题意;当x∈时,5x+∈,这个区间不含π(n∈Z)中的任何一个,函数f(x)在上单调,符合题意.
当ω=7时,k只能取-2,φ=-,f(x)=sin,则f=-1,x=是函数图象的对称轴,符合题意;当x∈时,7x-∈,这个区间含有,则函数f(x)在上不可能单调,不符合题意.
当ω=9时,k只能取-2,φ=,f(x)=sin,则f=1,x=是函数图象的对称轴,符合题意;当x∈时,9x+∈,这个区间不含π(n∈Z)中的任何一个,函数f(x)在上单调,符合题意.
当ω=11时,k只能取-3,φ=-,f(x)=sin,则f=1,x=是函数图象的对称轴,符合题意;当x∈时,11x-∈,这个区间含有,则函数f(x)在上不可能单调,不符合题意.
综上,ω的最大值为9.故选B.
法二:特殊值法
从T=,ω=2k+1(k∈N)来思考,ω需要最大值,只有从选项中的最大数开始,即从前往后一一验证:当ω=11时,T=,从单调区间的一个端点x=往前推算,靠近的单调区间为,,容易看出0)的单调区间的特征,每个区间长度为,从靠近区间的特殊极值点开始把可能出现的单调区间找出来比较,只要“所求区间包含在单调区间内”即可.
[针对训练]
1.(2019·丹东教学质量监测)若函数f(x)=2sin在区间和上都是单调递增函数,则实数x0的取值范围为( )
A. B.
C. D.
解析:选B 由2kπ-≤2x+≤2kπ+(k∈Z)得kπ-≤x≤kπ+(k∈Z),在原点附近的递增区间为-,,,因此解得≤x0≤,故选B.
2.已知函数f(x)=Asin(2x+φ)-的图象在y轴上的截距为1,且关于直线x=对称,若对于任意的x∈,都有m2-3m≤f(x),则实数m的取值范围为( )
A. B.[1,2]
C. D.
解析:选B ∵函数f(x)=Asin(2x+φ)-A>0,00,
所以当k=0时,m取得最小值,且最小值为.
此时,g(x)=sin.
因为x∈,所以2x+∈.
当2x+∈,即x∈时,g(x)单调递增,
当2x+∈,即x∈时,g(x)单调递增.
综上,g(x)在区间上的单调递增区间是和.
[方法技巧]
三角函数图象与性质综合问题的解题策略
(1)图象变换问题
先根据和、差角公式、倍角公式把函数表达式变为正弦型函数y=Asin(ωx+φ)+t或余弦型函数y=Acos(ωx+φ)+t的形式,再进行图象变换.
(2)函数性质问题
求函数周期、最值、单调区间的方法步骤:
①利用公式T=(ω>0)求周期;
②根据自变量的范围确定ωx+φ的范围,根据相应的正弦曲线或余弦曲线求值域或最值,另外求最值时,根据所给关系式的特点,也可换元转化为求二次函数的最值;
③根据正、余弦函数的单调区间列不等式求函数y=Asin(ωx+φ)+t或y=Acos(ωx+φ)+t的单调区间.
[针对训练]
设函数f(x)=sin+sin,其中0