所属成套资源:2019高考人教版数学(理科)一轮复习全套学案
2019版高考数学(理)一轮精选教师用书人教通用:第5章3第3讲 平面向量的数量积及应用举例
展开
第3讲 平面向量的数量积及应用举例
1.平面向量的数量积
定义
设两个非零向量a,b的夹角为θ,则数量|a||b|·cos__θ叫做a与b的数量积,记作a·b
投影
|a|cos__θ叫做向量a在b方向上的投影,
|b|cos__θ叫做向量b在a方向上的投影
几何意义
数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos__θ的乘积
2.向量的夹角
定义
图示
范围
共线与垂直
已知两个非零向量a和b,作=a,=b,则∠AOB就是a与b的夹角
设θ是a与b的夹角,则θ的取值范围是 0°≤θ≤180°
若θ=0°,则a与b同向;若θ=180°,则a与b反向;若θ=90°,则a与b垂直
3.向量数量积的运算律
(1)a·b=b·a;
(2)(λa)·b=λ(a·b)=a·(λb);
(3)(a+b)·c=a·c+b·c.
4.平面向量数量积的坐标运算及有关结论
已知非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ,a·b=x1x2+y1y2.
结论
几何表示
坐标表示
模
|a|=
|a|=
夹角
cos θ=
cos θ=
a⊥b的充要条件
a·b=0
x1x2+y1y2=0
判断正误(正确的打“√”,错误的打“×”)
(1)向量在另一个向量方向上的投影为数量,而不是向量.( )
(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( )
(3)由a·b=0可得a=0或b=0.( )
(4)(a·b)c=a(b·c).( )
(5)两个向量的夹角的范围是.( )
(6)若a·b>0,则a和b的夹角为锐角;若a·b0),又因为=+,=+=-,于是·=(+)·=·-2+2=-a2+a+1,由已知可得-a2+a+1=1.又a>0,
所以a=,即AB的长为.
【答案】
角度三 两向量垂直问题
已知向量与的夹角为120°,且||=3,||=2.若=λ+,且⊥,则实数λ的值为________.
【解析】 因为⊥,所以·=0.
又=λ+,=-,
所以(λ+)·(-)=0,
即(λ-1)·-λ2+2=0,
所以(λ-1)||||cos 120°-9λ+4=0.
所以(λ-1)×3×2×(-)-9λ+4=0.解得λ=.
【答案】
(1)求平面向量的夹角的方法
①定义法:利用向量数量积的定义知,cos θ=,其中两个向量的夹角θ的范围为[0,π],求解时应求出三个量:a·b,|a|,|b|或者找出这三个量之间的关系;
②坐标法:若a=(x1,y1),b=(x2,y2),则cos θ=;
(2)求向量的模的方法
①公式法:利用|a|=及(a±b)2=|a|2±2a·b+|b|2,把向量模的运算转化为数量积运算.
②几何法:利用向量的几何意义,即利用向量加、减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.
[通关练习]
1.(2018·河南百校联盟联考)已知非零向量a,b满足:2a·(2a-b)=b·(b-2a),|a-b|=3|a|,则a与b的夹角为________.
解析:由2a·(2a-b)=b·(b-2a)得4a2=b2,由|a-b|=3|a|得a2-2a·b+2b2=9a2,则a·b=0,即a⊥b,所以a与b的夹角为90°.
答案:90°
2.(2017·高考山东卷)已知e1,e2是互相垂直的单位向量.若e1-e2与e1+λe2的夹角为60°,则实数λ的值是________
解析:因为=,
故=,解得λ=.
答案:
3.(2018·东北四市高考模拟)已知向量=(3,1),=(-1,3),=m-n(m>0,n>0),若m+n=1,则||的最小值为________.
解析:由=(3,1),=(-1,3)得=m-n=(3m+n,m-3n),因为m+n=1(m>0,n>0),所以n=1-m且0