|学案下载
终身会员
搜索
    上传资料 赚现金
    2021届高考数学人教版一轮创新教学案:第1章第3讲 简单的逻辑联结词、全称量词与存在量词
    立即下载
    加入资料篮
    2021届高考数学人教版一轮创新教学案:第1章第3讲 简单的逻辑联结词、全称量词与存在量词01
    2021届高考数学人教版一轮创新教学案:第1章第3讲 简单的逻辑联结词、全称量词与存在量词02
    2021届高考数学人教版一轮创新教学案:第1章第3讲 简单的逻辑联结词、全称量词与存在量词03
    还剩10页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021届高考数学人教版一轮创新教学案:第1章第3讲 简单的逻辑联结词、全称量词与存在量词

    展开
    
    第3讲 简单的逻辑联结词、全称量词与存在量词

    [考纲解读] 1.了解逻辑联结词“或”“且”“非”的含义,并理解全称量词与存在量词的含义.(重点、难点)
    2.能正确地对含有一个量词的命题进行否定.(重点)
    [考向预测] 从近三年高考情况来看,本讲为高考中的低频考点.预测2021年高考对命题及量词的考查主要有:①判断全称命题与特称命题的真假;②全称命题、特称命题的否定;③根据命题的真假求参数的取值范围.


    1.简单的逻辑联结词
    (1)命题中的“或”“ 且”“ 非”叫做逻辑联结词.
    (2)概念
    用联结词“且”把命题p和命题q联结起来,得到复合命题“p且q”,记作p∧q;
    用联结词“或”把命题p和命题q联结起来,得到复合命题“p或q”,记作p∨q;
    对命题p的结论进行否定,得到复合命题“非p”,记作p.
    (3)命题p∧q,p∨q,p的真假判断

    p
    q
    p∧q
    p∨q
    p





















    2.全称量词和存在量词

    量词名词
    常见量词
    表示符号
    全称量词
    所有、一切、任意、全部、每一个、任给等

    存在量词
    存在一个、至少有一个、有一个、某个、有些、某些等


    3.全称命题和特称命题

    名称形式
    全称命题
    特称命题
    结构
    对M中的任意一个x,有p(x)成立
    存在M中的一个x0,使p(x0)成立
    简记
    ∀x∈M,p(x)
    ∃x0∈M,p(x0)
    否定
    ∃x0∈M,p(x0)
    ∀x∈M,p(x)



    1.概念辨析
    (1)命题“3≤3”是假命题.(  )
    (2)命题p与p不可能同真,也不可能同假.(  )
    (3)p,q中有一个假,则p∧q为假.(  )
    (4)“长方形的对角线相等”是特称命题.(  )
    答案 (1)× (2)√ (3)√ (4)×
                        

    2.小题热身
    (1)命题p:∃x0∈R,x-x0+1≤0的否定是(  )
    A.∃x0∈R,x-x0+1>0
    B.∀x∈R,x2-x+1≤0
    C.∀x∈R,x2-x+1>0
    D.∃x0∈R,x-x0+1<0
    答案 C
    解析 由已知得p是“∀x∈R,x2-x+1>0”.
    (2)下列命题中的假命题是(  )
    A.∃x0∈R,lg x0=1 B.∃x0∈R,sinx0=0
    C.∀x∈R,x3>0 D.∀x∈R,2x>0
    答案 C
    解析 因为lg 10=1,所以A是真命题;
    因为sin0=0,所以B是真命题;
    因为(-2)3<0,所以C是假命题;
    由指数函数的性质知∀x∈R,2x>0是真命题.
    (3)已知命题p:对任意的x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是(  )
    A.p∧q B.(p)∧(q)
    C.(p)∧q D.p∧(q)
    答案 D
    解析 易知p是真命题,q是假命题,所以p是假命题,q是真命题.进而可判断A,B,C是假命题,D是真命题.
    (4)命题“∃x0∈R,1<f(x0)≤2”的否定是________.
    答案 ∀x∈R,f(x)≤1或f(x)>2
    解析 由特称命题的否定可得,已知命题的否定是∀x∈R,f(x)≤1或f(x)>2.



    题型 一 含有逻辑联结词的命题的真假判断
                        


    1.已知命题p,q,“p为真”是“p∧q为假”的(  )
    A.充分不必要条件 B.必要不充分条件
    C.充要条件 D.既不充分也不必要条件
    答案 A
    解析 因为“綈p为真”⇔p为假⇒p∧q为假;p∧q为假⇒p假或q假 p为假⇔p为真.所以“p为真”是“p∧q为假”的充分不必要条件.
    2.命题p:函数y=log2(x-2)的单调增区间是[1,+∞),命题q:函数y=的值域为(0,1).下列命题是真命题的为(  )
    A.p∧q B.p∨q
    C.p∧(q) D.q
    答案 B
    解析 由于y=log2(x-2)在(2,+∞)上是增函数,
    所以命题p是假命题.
    由3x>0,得3x+1>1,所以0<<1,
    所以函数y=的值域为(0,1),故命题q为真命题.
    所以p∧q为假命题,p∨q为真命题,p∧(q)为假命题,q为假命题.

    1.判断含有逻辑联结词命题真假的步骤

    2.熟记一组口诀
    “或”命题一真即真,“且”命题一假即假,“非”命题真假相反.如举例说明1中p∧q为假⇔p假或q假.

    1.设a,b,c是非零向量.已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中的真命题是(  )
    A.p∨q B.p∧q
    C.(p)∧(q) D.p∨(q)
    答案 A
    解析 因为p是假命题,q是真命题,所以p∨q是真命题,p∧q,(p)∧(q),p∨(q)都是假命题.
    2.已知命题p:∃x0∈R,使sinx0=;命题q:∀x∈R,都有x2+x+1>0.给出下列结论:①命题“p∧q”是真命题;②命题“p∧(q)”是假命题;③命题“(p)∨q”是真命题;④命题“(p)∨(q)”是假命题,其中正确的是________.(把所有正确结论的序号都填上)
    答案 ②③
    解析 ∀x∈R,都有sinx∈[-1,1],所以不存在x0∈R,使sinx0=,故p是假命题,p是真命题;∀x∈R,都有x2+x+1=2+>0,故q是真命题,q是假命题.所以p∧q是假命题,p∧(q)是假命题,(p)∨q是真命题,(p)∨(q)是真命题.即②③正确.
    题型 二 全称命题、特称命题 
                        


    角度1 全称命题、特称命题的真假判断
    1.已知命题p:∀x∈R,x+≥2;命题q:∃x0∈(0,+∞),x>x,则下列命题中为真命题的是(  )
    A.(p)∧q B.p∧(q)
    C.(p)∧(q) D.p∧q
    答案 A
    解析 当x=-1时,x+<2,故p是假命题;当x0=时,2>3,故q是真命题,所以(p)∧q是真命题,p∧(q),(p)∧(q),p∧q都是假命题.
    角度2 含有一个量词的命题的否定
    2.(1)已知定义在R上的函数f(x)周期为T(常数),则命题“∀x∈R,f(x)=f(x+T)”的否定是____________;
    (2)命题“角平分线上的点到这个角两边的距离相等”的否定是____________________.
    答案 (1)∃x0∈R,f(x0)≠f(x0+T)
    (2)角平分线上有的点到这个角两边的距离不相等
    解析 (1)量词“∀”改为“∃”,f(x)=f(x+T)改为f(x)≠f(x+T),故已知命题的否定是∃x0∈R,f(x0)≠f(x0+T).
    (2)①改量词,本题中省略了量词“所有”,应将其改为“有的”;
    ②否定结论,“距离相等”改为“距离不相等”.
    故已知命题的否定是“角平分线上有的点到这个角两边的距离不相等”.

    1.全(特)称命题真假的判断方法
    全称
    命题
    (1)要判断一个全称命题是真命题,必须对限定的集合M中的每一个元素x,证明p(x)成立;
    (2)要判断一个全称命题是假命题,只要能举出集合M中的一个特殊值x=x0,使p(x0)不成立即可.如举例说明1中命题p的真假判断
    特称
    命题
    要判断一个特称命题是真命题,只要在限定的集合M中,找到一个x=x0,使p(x0)成立即可,否则这一特称命题就是假命题.如举例说明1中命题q的真假判断

    2.对全(特)称命题进行否定的方法
    (1)改写量词:全称量词改写为存在量词,存在量词改写为全称量词;
    (2)否定结论:对于一般命题的否定只需直接否定结论即可.
    提醒:对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再写出命题的否定.如举例说明2(2).                    


    1.设命题p:∃n∈N,n2>2n,则p为(  )
    A.∀n∈N,n2>2n B.∃n∈N,n2≤2n
    C.∀n∈N,n2≤2n D.∃n∈N,n2=2n
    答案 C
    解析 命题p的量词“∃”改为“∀”,“n2>2n”改为“n2≤2n”,故p:∀n∈N,n2≤2n.
    2.已知直线l:y=k(x-1),圆C:(x-1)2+y2=r2(r>0),现给出下列四个命题:
    p1:∀k∈R,l与C相交;p2:∃k∈R,l与C相切;
    p3:∀r>0,l与C相交;p4:∃r>0,l与C相切.
    其中真命题为(  )
    A.p1,p3 B.p1,p4
    C.p2,p3 D.p2,p4
    答案 A
    解析 因为直线l:y=k(x-1)恒过定点(1,0),圆C:(x-1)2+y2=r2(r>0)的圆心坐标为(1,0),所以直线l恒过圆心,所以∀k∈R,l与C相交,∀r∈R,l与C相交,所以p1,p3是真命题,p2,p4是假命题.



    题型 三 根据命题的真假求参数的取值范围 
                        


    1.(2019·黄冈模拟)已知a∈R,命题p:∀x∈[1,2],x2-a≥0,命题q:∃x∈R,x2+2ax+2-a=0.若命题p∧q为真命题,则实数a的取值范围是________.
    答案 a≤-2或a=1
    解析 若命题p是真命题,则有a≤x2对x∈[1,2]恒成立,所以a≤1,记A={a|a≤1},若命题q是真命题,则关于x的方程x2+2ax+2-a=0有实根,Δ=(2a)2-4(2-a)≥0,解得a≤-2或a≥1.记B={a|a≤-2或a≥1},因为命题p∧q为真命题,所以p,q都是真命题.所以a∈A∩B={a|a≤-2或a=1}.
    2.已知f(x)=ln (x2+1),g(x)=x-m,若∀x1∈[0,3],∃x2∈[1,2],使得f(x1)≥g(x2),则实数m的取值范围是________.
    答案 
    解析 当x1∈[0,3]时,f(x1)∈[0,ln 10],当x2∈[1,2]时,g(x2)∈.因为∀x1∈[0,3],∃x2∈[1,2],使得f(x1)≥g(x2),所以只需0≥-m,解得m≥.
    条件探究 将本例中“∃x2∈[1,2]”改为“∀x2∈[1,2]”,其他条件不变,则实数m的取值范围是________.
    答案 
    解析 当x2∈[1,2]时,g(x)max=g(1)=-m,
    由f(x)min≥g(x)max,得0≥-m,∴m≥.

    1.根据复合命题的真假求参数的取值范围的步骤
    (1)求出当命题p,q为真命题时所含参数的取值范围;
    (2)根据复合命题的真假判断命题p,q的真假;
    (3)根据命题p,q的真假情况,利用集合的交集、并集和补集的运算,求解参数的取值范围.如举例说明1.
    2.根据全称命题、特称命题的真假求参数的取值范围
    (1)巧用三个转化
    ①全称命题可转化为恒成立问题,如举例说明1.
    ②特称命题可转化为存在性问题.
    ③全(特)称命题假可转化为特(全)称命题真.
    (2)准确计算
    通过解方程或不等式(组)求出参数的值或范围.                    


    若“∀x∈,m≤tanx+1”为真命题,则实数m的最大值为________.
    答案 0
    解析 y=tanx在上单调递增,所以x∈⇒tanx∈[-1,1]⇒tanx+1∈[0,2].若∀x∈,总有m≤tanx+1成立,则m≤0,故实数m的最大值为0.
                      

     组 基础关
    1.已知命题p:∀x∈R,sinx≤1,则p为(  )
    A.∃x0∈R,sinx0≥1 B.∀x∈R,sinx≥1
    C.∃x0∈R,sinx0>1 D.∀x∈R,sinx>1
    答案 C
    解析 由已知得p为∃x0∈R,sinx0>1.
    2.已知命题p:∃x0∈R,log2(3x0+1)≤0,则(  )
    A.p是假命题;p:∀x∈R,log2(3x+1)≤0
    B.p是假命题;p:∀x∈R,log2(3x+1)>0
    C.p是真命题;p:∀x∈R,log2(3x+1)≤0
    D.p是真命题;p:∀x∈R,log2(3x+1)>0
    答案 B
    解析 綈p为∀x∈R,log2(3x+1)>0,此命题为真命题,所以命题p是假命题.
    3.若定义域为R的函数f(x)不是偶函数,则下列命题中一定为真命题的是(  )
    A.∀x∈R,f(-x)≠f(x)
    B.∀x∈R,f(-x)=-f(x)
    C.∃x0∈R,f(-x0)≠f(x0)
    D.∃x0∈R,f(-x0)=-f(x0)
    答案 C
    解析 由已知得∀x∈R,f(-x)=f(x)是假命题,所以其否定“∃x0∈R,f(-x0)≠f(x0)”是真命题.
    4.(2019·河北石家庄模拟)命题p:若sinx>siny,则x>y;命题q:x2+y2≥2xy.下列命题为假命题的是(  )
    A.p或q B.p且q
    C.q D.p
    答案 B
    解析 取x=,y=,可知命题p是假命题;由(x-y)2≥0恒成立,可知命题q是真命题,故p为真命题,p或q是真命题,p且q是假命题.
    5.(2019·唐山模拟)已知命题p:∃x0∈N,x<x;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga(x-1)的图象过点(2,0),则(  )
    A.p假q真 B.p真q假
    C.p假q假 D.p真q真
    答案 A
    解析 由x<x,得x(x0-1)<0,解得x0<0或0<x0<1,在这个范围内没有自然数,所以命题p为假命题;因为对任意的a∈(0,1)∪(1,+∞),均有f(2)=loga1=0,所以命题q为真命题.
    6.已知命题p:若复数z满足(z-i)(-i)=5,则z=6i;命题q:复数的虚部为-i,则下面为真命题的是(  )
    A.(p)∧(q) B.(p)∧q
    C.p∧(q) D.p∧q
    答案 C
    解析 由(z-i)(-i)=5,得z-i=5i,所以z=6i,故p是真命题,p是假命题;===-i.其虚部为-,故q是假命题,q是真命题.所以(p)∧(q)是假命题,(p)∧q是假命题,p∧(q)是真命题,p∧q是假命题.
    7.若命题“∀x∈R,使得x2+(a-1)x+1≥0”是假命题,则实数a的取值范围是(  )
    A.(-1,3)
    B.[-1,3]
    C.(-∞,-1)∪(3,+∞)
    D.(-∞,-1]∪[3,+∞)
    答案 C
    解析 由题意得,原命题的否定“∃x0∈R,使得x+(a-1)x0+1<0”是真命题,所以Δ=(a-1)2-4>0.所以a2-2a-3>0,解得a<-1或a>3.
    8.命题p的否定是“对所有正数x,>x+1”,则命题p可写为__________________.
    答案 存在正数x0,≤x0+1
    解析 命题p可写为“存在正数x0,≤x0+1”.
    9.已知命题p:∃x0∈Q,x=2,命题q:函数y=2cosx是偶函数,则下列命题:
    ①p∨q;②p∧q;③(p)∧(q);④p∨(q).
    其中为假命题的序号为________.
    答案 ②③④
    解析 因为p是假命题,q是真命题,所以p∨q是真命题,p∧q,(p)∧(q),p∨(q)都是假命题,即②③④为假命题.
    10.已知命题p:关于x的方程x2+ax+1=0有实根;命题q:a>0.若“(p∨q)”是假命题,“p∧q”是假命题,则实数a的取值范围是________.
    答案 (-∞,-2]∪(0,2)
    解析 当命题p为真时,有Δ=a2-4≥0,解得a≤-2或a≥2.
    因为“(p∨q)”是假命题,所以p∨q是真命题.
    又“p∧q”是假命题,所以p,q一个为真命题,一个为假命题.
    ①当p真q假时,则解得a≤-2;
    ②当p假q真时,则解得0 综上可得,实数a的取值范围是(-∞,-2]∪(0,2).
     组 能力关
    1.给出以下命题:
    ①存在x0∈R,sin2+cos2=;
    ②对任意实数x1,x2若x1<x2,则tanx1<tanx2;
    ③命题“∃x0∈R,<0”的否定是“∀x∈R,≥0”;
    ④∀x∈R,sinx<2x.
    其中真命题的个数是(  )
    A.0 B.1
    C.2 D.3
    答案 A
    解析 因为∀x∈R,sin2+cos2=1,所以①是假命题;当x1=,x2=π时,<π,但tan>tanπ,所以②是假命题;“∃x0∈R,<0”的否定是“∀x∈R,≥0或x=1”,故③是假命题.当x=-时,sin>2-,故④是假命题.
    2.(2019·唐山五校联考)已知命题p:“a>b”是“2a>2b”的充要条件;命题q:∃x∈R,|x+1|≤x,则(  )
    A.(p)∨q为真命题 B.p∧(q)为假命题
    C.p∧q为真命题 D.p∨q为真命题
    答案 D
    解析 由函数y=2x是R上的增函数,知命题p是真命题.对于命题q,当x+1≥0,即x≥-1时,|x+1|=x+1>x;当x+1<0,即x<-1时,|x+1|=-x-1,由-x-1≤x,得x≥-,无解,因此命题q是假命题.所以(p)∨q为假命题,A错误;p∧(q)为真命题,B错误;p∧q为假命题,C错误;p∨q为真命题,D正确.故选D.
    3.已知p:∃x0∈R,mx+1≤0;q:∀x∈R,x2+mx+1>0.若“p∨q”为假命题,则实数m的取值范围是(  )
    A.[2,+∞) B.(-∞,-2]
    C.(-∞,-2]∪[2,+∞) D.[-2,2]
    答案 A
    解析 依题意知,p,q均为假命题.当p是假命题时,mx2+1>0恒成立,则有m≥0;当q是假命题时,则有Δ=m2-4≥0,m≤-2或m≥2.因此由p,q均为假命题,得即m≥2.
    4.(2019·河北五校联考)已知x,y∈R,下列条件能作为“x>2且y>2”的必要不充分条件的个数为(  )
    ①∀t∈[0,4),均有x+y≥t恒成立;
    ②∀t∈[0,4),均有x-y≤t恒成立;
    ③∃t∈[4,+∞),有x+y≥t成立;
    ④∀t∈[4,+∞),均有x-y≤t恒成立.
    A.0 B.1
    C.2 D.3
    答案 C
    解析 若x>2且y>2,则x+y>4,显然①③成立.②转化为x-y≤0,显然不恒成立,如当x=4,y=3时,不满足.④转化为x-y≤4,显然不恒成立,如当x=10,y=3时不满足,所以①③是“x>2且y>2”的必要条件.而由①③不能推出x>2且y>2,所以①③是“x>2且y>2”的必要不充分条件.
    5.给出下列四个命题:
    ①∃x0<0,e-x0<1;
    ②∀x>2,x2>2x;
    ③∀α,β∈R,sin(α-β)=sinα-sinβ;
    ④若q是p成立的必要不充分条件,则q是p成立的充分不必要条件.
    其中真命题的序号是________.
    答案 ④
    解析 当x<0时,-x>0,e-x>1,所以①是假命题;
    当x=5时,52<25,所以②是假命题;
    当α=π,β=时,sin(α-β)=sin=,
    sinα-sinβ=sinπ-sin=-,
    sin(α-β)≠sinα-sinβ,所以③是假命题;④是真命题.
    6.(2019·洛阳模拟)已知p:∀x∈,2x 答案 
    解析 由2x=,
    y=x+在上为减函数.
    ∴当x=时,max=,
    故当p为真时,m>.
    函数f(x)=4x+2x+1+m-1=(2x+1)2+m-2,
    令f(x)=0,得2x=-1,
    若f(x)存在零点,则-1>0,解得m<1.
    故当q为真时,m<1.
    若“p且q”为真命题,则实数m的取值范围是.

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021届高考数学人教版一轮创新教学案:第1章第3讲 简单的逻辑联结词、全称量词与存在量词
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map