所属成套资源:2021高考物理基础版一轮复习学案
2021版高考物理(基础版)一轮复习学案:第五章 4素养探究课(四) 能量观念——功能关系 能量守恒定律
展开
素养探究课(四) 能量观念——功能关系 能量守恒定律
对功能关系的理解和应用[学生用书P99]
【题型解读】
1.对功能关系的理解
(1)做功的过程就是能量转化的过程.不同形式的能量发生相互转化是通过做功来实现的.
(2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数值上相等.
2.功是能量转化的量度
力学中几种常见的功能关系如下:
【跟进题组】
1.(2018·11月浙江选考)奥运会比赛项目撑杆跳高如图所示,下列说法不正确的是( )
A.加速助跑过程中,运动员的动能增加
B.起跳上升过程中,杆的弹性势能一直增加
C.起跳上升过程中,运动员的重力势能增加
D.越过横杆后下落过程中,运动员的重力势能减少,动能增加
解析:选B.加速助跑过程中速度增大,动能增加,A正确;撑杆从开始形变到撑杆恢复形变时,先是运动员部分动
能转化为杆的弹性势能,后弹性势能转化为运动员的动能与重力势能,杆的弹性势能不是一直增加,B错误;起跳上升过程中,运动员的高度在不断增大,所以运动员的重力势能增加,C正确;当运动员越过横杆下落的过程中,他的高度降低、速度增大,重力势能被转化为动能,即重力势能减少,动能增加,D正确.
2.(2018·高考全国卷Ⅰ)如图,abc是竖直面内的光滑固定轨道,ab水平,长度为2R; bc是半径为R的四分之一圆弧,与ab相切于b点.一质量为m的小球,始终受到与重力大小相等的水平外力的作用,自a点处从静止开始向右运动.重力加速度大小为g.小球从a点开始运动到其轨迹最高点,机械能的增量为( )
A.2mgR B.4mgR
C.5mgR D.6mgR
解析:选C.设小球运动到c点的速度大小为vc,则对小球由a到c的过程,由动能定理有F·3R-mgR=mv,又F=mg,解得vc=2,小球离开c点后,在水平方向做初速度为零的匀加速直线运动,竖直方向在重力作用下做匀减速直线运动,由牛顿第二定律可知,小球离开c点后水平方向和竖直方向的加速度大小均为g,则由竖直方向的运动可知,小球从离开c点到其轨迹最高点所需的时间为t==2,在水平方向的位移大小为x=gt2=2R.由以上分析可知,小球从a点开始运动到其轨迹最高点的过程中,水平方向的位移大小为5R,则小球机械能的增加量为ΔE=F·5R=5mgR,C正确,A、B、D错误.
能量守恒定律的应用[学生用书P100]
【题型解读】
1.两种摩擦力做功的比较
静摩擦力
滑动摩擦力
不同点
能量的转化方面
只有能量的转移,没有能量的转化
既有能量的转移,又有能量的转化
一对摩擦力的总功方面
一对静摩擦力所做功的代数和等于零
一对滑动摩擦力所做功的代数和为负值,总功W=-Ff·l相对,即摩擦时产生的热量
正功、负功、不做功方面
静摩擦力做正功时,它的反作用力一定做负功
滑动摩擦力做负功时,它的反作用力可能做正功,可能做负功,还可能不做功;但滑动摩擦力做正功或不做功时,它的反作用力一定做负功
相同点
两种摩擦力对物体可以做正功、负功,还可以不做功
2.三步求解相对滑动物体的能量问题
3.能量转化问题的解题思路
(1)当涉及滑动摩擦力做功,机械能不守恒时,一般应用能的转化和守恒定律.
(2)解题时,首先确定初、末状态,然后分析状态变化过程中哪种形式的能量减少,哪种形式的能量增加,求出减少的能量总和ΔE减和增加的能量总和ΔE增,最后由ΔE减=ΔE增列式求解.
【典题例析】
(多选)(2020·湖北四地七校高三期末联考)如图所示,固定的光滑竖直杆上套一个滑块A,与滑块A连接的细绳绕过光滑的轻质定滑轮连接滑块B,细绳不可伸长,滑块B放在粗糙的固定斜面上,连接滑块B的细绳和斜面平行,滑块A从细绳水平位置由静止释放(不计轮轴处的摩擦),到滑块A下降到速度最大(A未落地,B未上升至滑轮处)的过程中( )
A.滑块A和滑块B的加速度大小一直相等
B.滑块A减小的机械能等于滑块B增加的机械能
C.滑块A的速度最大时,滑块A的速度大于B的速度
D.细绳上的张力对滑块A做的功等于滑块A机械能的变化量
[解析] 两滑块与绳构成绳连接体,沿绳方向的加速度大小相等,则A沿绳的分加速度等于B的加速度,A错误;绳连接体上的一对拉力做功不损失机械能,但B受到的斜面摩擦力对B做负功,由能量守恒可知滑块A减小的机械能等于滑块B增加的机械能和摩擦生热之和,B错误;滑块A的速度最大时,将滑块A的速度分解,如图所示,绳连接体沿绳方向的速度大小相等,则A沿绳的分速度等于B的运动速度,显然滑块A的速度大于B的速度,C正确;对A受力分析可知,除重力外,只有细绳的张力对滑块A做功,由功能关系可知,细绳上的张力对滑块A做的功等于滑块A机械能的变化量,D正确.
[答案] CD
【迁移题组】
迁移1 滑块—滑板模型中能量的转化问题
1.(多选)(2020·江西九江一模)第一次将一长木板静止放在光滑水平面上,如图甲所示,一小铅块(可视为质点)以水平初速度v0由木板左端向右滑动,到达右端时恰能与木板保持相对静止.第二次将长木板分成A、B两块,使B的长度和质量均为A 的2倍,并紧挨着放在原水平面上,让小铅块仍以初速度v0由A的左端开始向右滑动,如图乙所示.若小铅块相对滑动过程中所受的摩擦力始终不变,则下列说法正确的( )
A.小铅块将从B的右端飞离木板
B.小铅块滑到B的右端前已与B保持相对静止
C.第一次和第二次过程中产生的热量相等
D.第一次过程中产生的热量大于第二次过程中产生的热量
解析:选BD.在第一次小铅块运动过程中,小铅块与木板之间的摩擦力使整个木板一直加速,第二次小铅块先使整个木板加速,当小铅块运动到B上后A停止加速,只有B加速,加速度大于第一次的对应过程,故第二次小铅块与B将更早共速,所以小铅块还没有运动到B的右端,二者就已共速,A错误,B正确;由于第一次的相对路程大于第二次的相对路程,则第一次过程中产生的热量大于第二次过程中产生的热量,C错误,D正确.
迁移2 能量守恒的综合应用
2.
如图所示,一物体质量m=2 kg,在倾角θ=37°的斜面上的A点以初速度v0=3 m/s下滑,A点距弹簧上端B的距离AB=4 m.当物体到达B点后将弹簧压缩到C点,最大压缩量BC=0.2 m,然后物体又被弹簧弹上去,弹到的最高位置为D点,D点距A点的距离AD=3 m.挡板及弹簧质量不计,g取10 m/s2,sin 37°=0.6,求:
(1)物体与斜面间的动摩擦因数μ;
(2)弹簧的最大弹性势能Epm.
解析:(1)物体从开始位置A点到最后D点的过程中,弹簧弹性势能没有发生变化,物体动能和重力势能减少,机械能的减少量为
ΔE=ΔEk+ΔEp=mv+mglADsin 37°①
物体克服摩擦力产生的热量为
Q=Ffx②
其中x为物体的路程,即x=5.4 m③
Ff=μmgcos 37°④
由能量守恒定律可得ΔE=Q⑤
由①②③④⑤式解得μ≈0.52.
(2)由A到C的过程中,动能减少
ΔE′k=mv⑥
重力势能减少ΔE′p=mglACsin 37°⑦
摩擦生热Q=FflAC=μmgcos 37°lAC⑧
由能量守恒定律得弹簧的最大弹性势能为
Epm=ΔE′k+ΔE′p-Q⑨
联立⑥⑦⑧⑨解得Epm≈24.5 J.
答案:(1)0.52 (2)24.5 J
应用能量守恒定律解题的步骤
[学生用书P101]
摩擦力做功与能量的转化分析
【对点训练】
1.如图所示,木块A放在木块B的左端上方,用水平恒力F将A拉到B的右端,第一次将B固定在地面上,F做功W1,生热Q1;第二次让B在光滑水平面上可自由滑动,F做功W2,生热Q2.则下列关系中正确的是( )
A.W1