终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2020版高考数学一轮复习课后限时集训7《二次函数的再研究与幂函数》文数(含解析)北师大版 试卷

    立即下载
    加入资料篮
    2020版高考数学一轮复习课后限时集训7《二次函数的再研究与幂函数》文数(含解析)北师大版第1页
    2020版高考数学一轮复习课后限时集训7《二次函数的再研究与幂函数》文数(含解析)北师大版第2页
    还剩2页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020版高考数学一轮复习课后限时集训7《二次函数的再研究与幂函数》文数(含解析)北师大版 试卷

    展开

    课后限时集训(七) (建议用时:60分钟)A组 基础达标一、选择题1.(2019·孝义模拟)函数f(x)=2x2mx+3,若当x∈[-2,+∞)时是增函数,当x∈(-∞,-2]时是减函数,则f(1)等于(  )A.-3    B.13    C.7    D.5B [由题意知=-2,即m=-8,所以f(x)=2x2+8x+3,所以f(1)=2×12+8×1+3=13,故选B.]2.函数f(x)=(m2m-1)xm是幂函数,且在(0,+∞)上为增函数,则实数m的值是(  )A.-1 B.2  C.3 D.-1或2B [由题意知解得m=2,故选B.]3.已知函数f(x)=x2-2x+3在区间[0,m]上有最大值3,最小值2,则m的取值范围是(  )A.[1,+∞) B.[0,2]C.(-∞,2] D.[1,2]D [f(x)=x2-2x+3=(x-1)2+2,且f(0)=f(2)=3,f(1)=2,则1≤m≤2,故选D.]4.(2019·舟山模拟)已知abc∈R,函数f(x)=ax2bxc.若f(0)=f(4)>f(1),则(  )A.a>0,4ab=0 B.a<0,4ab=0C.a>0,2ab=0 D.a<0,2ab=0A [由f(0)=f(4),得f(x)=ax2bxc的对称轴为x==2,所以4ab=0,又f(0)>f(1),所以f(x)先减后增,所以a>0,故选A.]5.若关于x的不等式x2ax+1≥0在区间上恒成立,则a的最小值是(  )A.0 B.2 C.- D.-3C [由x2ax+1≥0,得a≥-上恒成立.g(x)=,因为g(x)在上为增函数,所以g(x)max=g=,所以a≥-.故选C.]二、填空题6.已知P=2-Q=3R=3,则PQR的大小关系是________.PRQ [P=2-=3,根据函数y=x3是R上的增函数且333,即PRQ.]7.已知二次函数的图像与x轴只有一个交点,对称轴为x=3,与y轴交于点(0,3).则它的解析式为________.y=x2-2x+3 [由题意知,可设二次函数的解析式为y=a(x-3)2,又图像与y轴交于点(0,3),所以3=9a,即a=.所以y=(x-3)2=x2-2x+3.]8.已知函数f(x)=x2+(a+1)xb满足f(3)=3,且f(x)≥x恒成立,则ab=________.3 [由f(3)=3得9+3(a+1)+b=3,即b=-3a-9.所以f(x)=x2+(a+1)x-3a-9.f(x)≥xx2ax-3a-9≥0.Δ=a2-4(-3a-9)≤0,即(a+6)2≤0,所以a=-6,b=9.所以ab=3.]三、解答题9.已知函数f(x)=ax2bx+1(ab为实数,a≠0,x∈R).(1)若函数f(x)的图像过点(-2,1),且方程f(x)=0有且只有一个根,求f(x)的表达式;(2)在(1)的条件下,当x∈[-1,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.[解] (1)因为f(-2)=1,即4a-2b+1=1,所以b=2a.因为方程f(x)=0有且只有一个根,所以Δ=b2-4a=0.所以4a2-4a=0,所以a=1,b=2.所以f(x)=x2+2x+1.(2)g(x)=f(x)-kx=x2+2x+1-kx=x2-(k-2)x+1=2+1-.g(x)的图像知,要满足题意,则≥2或≤-1,即k≥6或k≤0,所以所求实数k的取值范围为(-∞,0]∪[6,+∞).10.已知函数f(x)=x2+(2a-1)x-3.(1)当a=2,x∈[-2,3]时,求函数f(x)的值域;(2)若函数f(x)在[-1,3]上的最大值为1,求实数a的值.[解] (1)当a=2时,f(x)=x2+3x-3,x∈[-2,3],对称轴x=∈[-2,3],f(x)min=f=-3=f(x)max=f(3)=15,∴值域为.(2)由函数f(x)=x2+(2a-1)x-3知其对称轴为直线x=.①当-≤1,即a≥-时,f(x)max=f(3)=6a+3,∴6a+3=1,即a=满足题意;②当->1,即a<-时,f(x)max=f(-1)=-2a-1,∴-2a-1=1,即a=-1满足题意.综上可知a=或-1.B组 能力提升1.已知函数f(x)=则满足不等式f(1-x2)>f(2x)的x的取值范围是(  )A.(-1,)    B.(0,2)C.(-1,-1) D.(1-,1)C [由题意知f(x)在[0,+∞)上是增加的,且x<0时,f(x)=1.f(1-x2)>f(2x)可转化为解得-1<x-1,故选C.]2.(2019·江淮十校模拟)函数f(x)=x2bxc满足f(x+1)=f(1-x),且f(0)=3,则f(bx)与f(cx)的大小关系是(  )A.f(bx)≤f(cx) B.f(bx)≥f(cx)C.f(bx)>f(cx) D.与x有关,不确定A [由f(x+1)=f(1-x)知函数f(x)的对称轴x==1,所以b=2,由f(0)=3得c=3.x≥0时,1≤2x≤3x,则f(2x)≤f(3x),x<0时,3x<2x<1,则f(2x)<f(3x).综上知,f(2x)≤f(3x),即f(bx)≤f(cx),故选A.]3.已知点P1(x1,100)和P2(x2,100)在二次函数f(x)=ax2bx+10的图像上,则f(x1x2)=________.10 [由题意知x1x2==f(x1x2)=f=a×2b×+10=10.]4.已知函数f(x)=x2ax+3-a,若x∈[-2,2]时,f(x)≥0恒成立,求a的取值范围.[解] 要使f(x)≥0恒成立,则函数在区间[-2,2]上的最小值不小于0,设f(x)的最小值为g(a).f(x)的对称轴为x=. (1)当-<-2,即a>4时,g(a)=f(-2)=7-3a≥0,得a故此时a不存在;(2)当-∈[-2,2],即-4≤a≤4时,g(a)=f=3-a≥0,得-6≤a≤2,又-4≤a≤4,故-4≤a≤2;(3)当->2,即a<-4时,g(a)=f(2)=7+a≥0,a≥-7,又a<-4,故-7≤a<-4.综上得-7≤a≤2.   

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map