终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    高考数学一轮复习:9统计与概率-重难点突破1练习(题型归纳与重难专题突破提升)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      重难点突破01 统计与概率综合(原卷版).docx
    • 解析
      重难点突破01 统计与概率综合(解析版).docx
    重难点突破01 统计与概率综合(原卷版)第1页
    重难点突破01 统计与概率综合(原卷版)第2页
    重难点突破01 统计与概率综合(原卷版)第3页
    重难点突破01 统计与概率综合(解析版)第1页
    重难点突破01 统计与概率综合(解析版)第2页
    重难点突破01 统计与概率综合(解析版)第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学一轮复习:9统计与概率-重难点突破1练习(题型归纳与重难专题突破提升)

    展开

    这是一份高考数学一轮复习:9统计与概率-重难点突破1练习(题型归纳与重难专题突破提升),文件包含重难点突破01统计与概率综合原卷版docx、重难点突破01统计与概率综合解析版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。
    (1)求,;
    (2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高.(如果,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)
    【解答】解:(1)根据表中数据,计算,2,,,填表如下:
    计算平均数为,
    方差为.
    (2)由(1)知,,,
    所以,认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.
    2.某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:
    利用该指标制定一个检测标准,需要确定临界值,将该指标大于的人判定为阳性,小于或等于的人判定为阴性,此检测标准的漏诊率是将患病者判定为阴性的概率,记为(c);误诊率是将未患病者判定为阳性的概率,记为(c).假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.
    (1)当漏诊率(c)时,求临界值和误诊率(c);
    (2)设函数(c)(c)(c).当,,求(c)的解析式,并求(c)在区间,的最小值.
    【解答】解:(1)当漏诊率(c)时,
    则,解得;
    (c);
    (2)当,时,
    (c)(c)(c),
    当,时,(c)(c)(c),
    故(c),
    所以(c)的最小值为0.02.
    3.一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:.试验结果如下:
    对照组的小白鼠体重的增加量从小到大排序为
    试验组的小白鼠体重的增加量从小到大排序为
    (1)计算试验组的样本平均数;
    (2)(ⅰ)求40只小白鼠体重的增加量的中位数,再分别统计两样本中小于与不小于的数据的个数,完成如下列联表;
    (ⅱ)根据中的列联表,能否有的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?
    附:,
    【解答】解:(1)根据题意,计算试验组样本平均数为

    (2)由题意知,这40只小鼠体重的中位数是将两组数据合在一起,从小到大排列后第20位与第21位数据的平均数,
    因为原数据的第11位数据是18.8,后续依次为19.2,19.8,20.2,20.2,21.3,21.6,22.5,22.8,23.2,23.6,,
    所以第20位为23.2,第21位数据为23.6,
    所以这组数据的中位数是;
    填写列联表如下:
    根据列联表中数据,计算,
    所以有的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异.
    4.甲、乙两城之间的长途客车均由和两家公司运营.为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:
    (1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;
    (2)能否有的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?
    附:.
    【解答】解:(1)公司一共调查了260辆车,其中有240辆准点,故公司准点的概率为;
    公司一共调查了240辆车,其中有210辆准点,故公司准点的概率为;
    (2)由题设数据可知,准点班次数共450辆,未准点班次数共50辆,公司共260辆,公司共240辆,

    有的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.
    5.甲、乙两名运动员进行五局三胜制的乒乓球比赛,先赢得3局的运动员获胜,并结束比赛.设各局比赛的结果相互独立,每局比赛甲赢的概率为,乙赢的概率为.
    (1)求甲获胜的概率;
    (2)设为结束比赛所需要的局数,求随机变量的分布列及数学期望.
    【解答】解:(1)由已知可得,比赛三局且甲获胜的概率为,
    比赛四局且甲获胜的概率为,
    比赛五局且甲获胜的概率为,
    所以甲获胜的概率为.
    (2)随机变量的取值为3,4,5,
    则,


    所以随机变量的分布列为:
    则随机变量的数学期望为.
    6.在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:
    (1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);
    (2)估计该地区一位这种疾病患者的年龄位于区间,的概率;
    (3)已知该地区这种疾病患者的患病率为,该地区年龄位于区间,的人口占该地区总人口的.从该地区中任选一人,若此人的年龄位于区间,,求此人患这种疾病的概率(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001 .
    【解答】解:(1)由频率分布直方图得该地区这种疾病患者的平均年龄为:
    岁.
    (2)该地区一位这种疾病患者的年龄位于区间,的频率为:

    估计该地区一位这种疾病患者的年龄位于区间,的概率为0.89.
    (3)设从该地区中任选一人,此人的年龄位于区间,为事件,此人患这种疾病为事件,
    则.
    7.甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:
    (1)甲机床、乙机床生产的产品中一级品的频率分别是多少?
    (2)能否有的把握认为甲机床的产品质量与乙机床的产品质量有差异?
    附:.
    【解答】解:(1)由题意可得,甲机床、乙机床生产总数均为200件,
    因为甲的一级品的频数为150,所以甲的一级品的频率为;
    因为乙的一级品的频数为120,所以乙的一级品的频率为;
    (2)根据列联表,可得

    所以有的把握认为甲机床的产品质量与乙机床的产品质量有差异.
    8.2022年卡塔尔世界杯是第二十二届世界杯足球赛,是历史上首次在卡塔尔和中东国家境内举行,也是第二次在亚洲举行的世界杯足球赛.11月22日,卡塔尔世界杯小组赛组第1轮比赛中,梅西领衔的阿根廷队不敌沙特阿拉伯队.梅西在开场阶段打入一粒点球,但沙特在下半场开局后连入两球反超比分,这也是亚洲球队在本届世界杯上获得的首场胜利!为提升球队的射门技术,某足球队进行一次足球定点射门测试,规定每人最多踢3次,每次射门的结果相互独立.在处射进一球得3分,在处射进一球得2分,否则得0分.将队员得分逐次累加并用表示,如果的值不低于3分就判定为通过测试,立即停止射门,否则应继续射门,直到踢完三次为止.现有两种射门方案,方案1:先在处踢一球,以后都在处踢;方案2:都在处踢球.已知甲队员在处射门的命中率为,在处射门的命中率为.
    (1)若甲队员选择方案1,求他测试结束后所得总分的分布列和数学期望;
    (2)你认为甲队员选择哪种方案通过测试的可能性更大?说明理由.
    【解答】解:(1)设甲队员在处命中的事件为,在处命中的事件为,2,,有,
    的所有可能值为0,2,3,4,
    ,,,,
    所以的分布列为:
    数学期望;
    (2)设甲队员选择方案1通过测试的概率为,选择方案2通过测试的概率为,
    由(1)知,,,显然,
    所以甲队员选择方案2通过测试的可能性更大.
    9.在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到以上(含的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:
    甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;
    乙:9.78,9.56,9.51,9.36,9.32,9.23;
    丙:9.85,9.65,9.20,9.16.
    假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.
    (Ⅰ)估计甲在校运动会铅球比赛中获得优秀奖的概率;
    (Ⅱ)设是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计的数学期望;
    (Ⅲ)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)
    【解答】解:(Ⅰ)甲以往的10次成绩中有4次获得优秀奖,用频率估计概率,则甲在校运动会铅球比赛中获得优秀奖的概率.
    (Ⅱ)用频率估计概率,则乙在校运动会铅球比赛中获得优秀奖的概率为,丙在校运动会铅球比赛中获得优秀奖的概率为,
    的所有可能取值为0,1,2,3,
    则,




    (Ⅲ)由题中数据可知,乙与丙获得优秀奖的概率较大,均为,且丙投出过三人成绩中的最大值,
    在三人中有一定优势,
    故如果发挥较好的话丙获得的概率估计值最大.
    10.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
    旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.
    (1)求,,,;
    (2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).
    【解答】解:(1)由题中的数据可得,,



    (2),,
    因为,
    所以,
    故新设备生产产品的该项指标的均值较旧设备有显著提高.
    11.某学校组织“一带一路”知识竞赛,有,两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.类问题中的每个问题回答正确得20分,否则得0分;类问题中的每个问题回答正确得80分,否则得0分.
    已知小明能正确回答类问题的概率为0.8,能正确回答类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.
    (1)若小明先回答类问题,记为小明的累计得分,求的分布列;
    (2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.
    【解答】解:(1)由已知可得,的所有可能取值为0,20,100,
    则,

    所以的分布列为:
    (2)由(1)可知小明先回答类问题累计得分的期望为,
    若小明先回答类问题,记为小明的累计得分,
    则的所有可能取值为0,80,100,



    则的期望为,
    因为,
    所以为使累计得分的期望最大,小明应选择先回答类问题.
    12.某厂生产的某种零件的尺寸大致服从正态分布,,且规定尺寸为次品,其余的为正品.生产线上的打包机自动把每5件零件打包成1箱,然后进入销售环节,若每销售一件正品可获利50元,每销售一件次品亏损100元.现从生产线生产的零件中抽样20箱做质量分析,作出的频率分布直方图如图:
    (1)估计生产线生产的零件的平均尺寸;
    (2)从生产线上随机取一箱零件,求这箱零件销售后的期望利润.
    【解答】解:(1)生产线生产的产品平均尺寸为:;
    (2)次品的尺寸范围,
    即,
    即,
    故生产线生产的产品次品率为:,
    设生产线上的一箱零件件)中的正品数为,正品率为,
    故,
    则,
    设销售生产线上的一箱零件获利为元,
    则,
    则(元,
    所以这箱零件销售后的期望利润为100元.
    13.为了研究某种农产品价格变化的规律,收集到了该农产品连续40天的价格变化数据,如表所示,在描述价格变化时,用“”表示“上涨”,即当天价格比前一天价格高;用“”表示“下跌”,即当天价格比前一天价格低;用“0”表示“不变”,即当天价格与前一天价格相同.
    用频率估计概率.
    (Ⅰ)试估计该农产品“上涨”的概率;
    (Ⅱ)假设该农产品每天的价格变化是相互独立的,在未来的日子里任取4天,试估计该农产品价格在这4天中2天“上涨”、1天“下跌”、1天“不变”的概率;
    (Ⅲ)假设该农产品每天的价格变化只受前一天价格的影响,判断第41天该农产品价格“上涨”、“下跌”和“不变”的概率估计值哪个最大.(结论不要求证明)
    【解答】解:(Ⅰ)由表可知,40天中“上涨”的有16天,则该农产品“上涨”的概率为.
    (Ⅱ)由表可知,40天中“下跌”的有14天,则该农产品“下跌”的概率为,
    40天中“不变”的有10天,则该农产品“不变”的概率为,
    则该农产品价格在这4天中2天“上涨”、1天“下跌”、1天“不变”的概率.
    (Ⅲ)由于第40天处于“上涨”状态,从前39天中15次“上涨”进行分析,
    “上涨”后下一次仍“上涨”的有4次,概率为,
    “上涨”后下一次“不变”的有9次,概率为,
    “上涨”后下一次“下降”的有2次,概率为,
    故第41天该农产品价格“不变”的概率估值最大.
    14.一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:.
    (1)设表示指定的两只小鼠中分配到对照组的只数,求的分布列和数学期望;
    (2)试验结果如下:
    对照组的小白鼠体重的增加量从小到大排序为
    15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.1
    32.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2
    试验组的小白鼠体重的增加量从小到大排序为
    7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.2
    19.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5
    求40只小白鼠体重的增加量的中位数,再分别统计两样本中小于与不小于的数据的个数,完成如下列联表:
    根据中的列联表,能否有的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?
    附:,
    【解答】解:(1)根据题意可得,1,2,
    又,


    的分布列为:

    (2)个数据从小到大排列后,中位数即为第20位和第21位数的平均数,
    第20位数为23.2,第21位数为23.6,

    补全列联表为:
    由可知,
    能有的把握认为药物对小鼠生长有抑制作用.
    15.2023年6月7日,21世纪汽车博览会在上海举行,已知某汽车模型公司共有25个汽车模型,其外观和内饰的颜色分布如下表所示:
    (1)若小明从这些模型中随机拿一个模型,记事件为小明取到红色外观的模型,事件为小明取到棕色内饰的模型,求(B)和,并判断事件和事件是否独立;
    (2)该公司举行了一个抽奖活动,规定在一次抽奖中,每人可以一次性从这些模型中拿两个汽车模型,给出以下假设:
    假设1:拿到的两个模型会出现三种结果,即外观和内饰均为同色、外观和内饰都异色、以及仅外观或仅内饰同色;
    假设2:按结果的可能性大小,概率越小奖项越高;
    假设3:该抽奖活动的奖金额为:一等奖600元,二等奖300元、三等奖150元;
    请你分析奖项对应的结果,设为奖金额,写出的分布列并求出的数学期望.
    【解答】解:(1)若红色外观的模型,则分棕色内饰12个,米色内饰2个,则对应的概率(A),
    若小明取到棕色内饰,分红色外观12,蓝色外观8,则对应的概率(B).
    取到红色外观的模型同时是棕色内饰的有12个,即,
    则.
    (A)(B),(A)(B),
    即事件和事件不独立.
    (2)由题意知,300,150,
    则外观和内饰均为同色的概率,
    外观和内饰都异色的概率,
    仅外观或仅内饰同色的概率,

    ,,,
    则的分布列为:
    则(元.
    16.甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.
    (1)求第2次投篮的人是乙的概率;
    (2)求第次投篮的人是甲的概率;
    (3)已知:若随机变量服从两点分布,且,,2,,,则.记前次(即从第1次到第次投篮)中甲投篮的次数为,求.
    【解答】解:(1)设第2次投篮的人是乙的概率为,
    由题意得;
    (2)由题意设为第次投篮的是甲,
    则,

    又,则是首项为,公比为0.4的等比数列,
    ,即,
    第次投篮的人是甲的概率为;
    (3)由(2)得,
    当时,,
    综上所述,,.
    17.一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:
    (1)能否有的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?
    (2)从该地的人群中任选一人,表示事件“选到的人卫生习惯不够良好”, 表示事件“选到的人患有该疾病”, 与的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为.
    (ⅰ)证明:;
    (ⅱ)利用该调查数据,给出,的估计值,并利用(ⅰ)的结果给出的估计值.
    附:.
    【解答】解:(1)补充列联表为:
    计算,
    所以有的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.
    (2)证明:;
    (ⅱ)利用调查数据,,,,,
    所以.
    18.在核酸检测中,“合1”混采核酸检测是指:先将个人的样本混合在一起进行1次检测,如果这个人都没有感染新冠病毒,则检测结果为阴性,得到每人的检测结果都为阴性,检测结束;如果这个人中有人感染新冠病毒,则检测结果为阳性,此时需对每人再进行1次检测,得到每人的检测结果,检测结束.
    现对100人进行核酸检测,假设其中只有2人感染新冠病毒,并假设每次检测结果准确.
    (Ⅰ)将这100人随机分成10组,每组10人,且对每组都采用“10合1”混采核酸检测.
    (ⅰ)如果感染新冠病毒的2人在同一组,求检测的总次数:
    (ⅱ)已知感染新冠病毒的2人分在同一组的概率为.设是检测的总次数,求的分布列与数学期望.
    (Ⅱ)将这100人随机分成20组,每组5人,且对每组都采用“5合1”混采核酸检测.设是检测的总次数,试判断数学期望与(Ⅰ)中的大小.(结论不要求证明)
    【解答】解:(Ⅰ)(ⅰ)若采用“10合1检测法”,每组检查一次,共10次;
    又两名患者在同一组,需要再检查10次,
    因此一共需要检查20次.
    (ⅱ)由题意可得:,30.
    ,.
    可得分布列:

    (Ⅱ)由题意可得:,30.
    ,.
    可得分布列:


    另解:设“10合1”混采核酸检测两名感染患者在同一组的概率为,“5合1”混采核酸检测两名感染患者在同一组的概率为,则,
    此时有;
    而,

    19.一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代,,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设表示1个微生物个体繁殖下一代的个数,,1,2,.
    (Ⅰ)已知,,,,求;
    (Ⅱ)设表示该种微生物经过多代繁殖后临近灭绝的概率,是关于的方程:的一个最小正实根,求证:当时,,当时,;
    (Ⅲ)根据你的理解说明(2)问结论的实际含义.
    【解答】(Ⅰ)解:由题意,,,,,
    故;
    (Ⅱ)证明:由题意可知,,则,
    所以,变形为,
    所以,
    即,
    即,
    令,
    若时,则的对称轴为,
    注意到(若,则不成立,当,却有,
    (1),
    若时,(1),
    当时,(1),的正实根,原方程的最小正实根,
    当时,(1),的正实根,原方程的最小正实根,
    (Ⅲ)解:当1个微生物个体繁殖下一代的期望小于等于1时,这种微生物经过多代繁殖后临近灭绝;
    当1个微生物个体繁殖下一代的期望大于1时,这种微生物经过多代繁殖后还有继续繁殖的可能.
    20.某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:和材积量(单位:,得到如下数据:
    并计算得,,.
    (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;
    (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到;
    (3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.
    附:相关系数,.
    【解答】解:(1)设这种树木平均一棵的根部横截面积为,平均一棵的材积量为,
    则根据题中数据得:,;
    (2)由题可知,;
    (3)设总根部面积和,总材积量为,则,故.
    试验序号
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    伸缩率
    545
    533
    551
    522
    575
    544
    541
    568
    596
    548
    伸缩率
    536
    527
    543
    530
    560
    533
    522
    550
    576
    536
    试验序号
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    伸缩率
    545
    533
    551
    522
    575
    544
    541
    568
    596
    548
    伸缩率
    536
    527
    543
    530
    560
    533
    522
    550
    576
    536
    9
    6
    8
    15
    11
    19
    18
    20
    12
    15.2
    18.8
    20.2
    21.3
    22.5
    23.2
    25.8
    26.5
    27.5
    30.1
    32.6
    34.3
    34.8
    35.6
    35.6
    35.8
    36.2
    37.3
    40.5
    43.2
    7.8
    9.2
    11.4
    12.4
    13.2
    15.5
    16.5
    18.0
    18.8
    19.2
    19.8
    20.2
    21.6
    22.8
    23.6
    23.9
    25.1
    28.2
    32.3
    36.5
    对照组
    试验组
    0.100
    0.050
    0.010
    2.706
    3.841
    6.635
    合计
    对照组
    6
    14
    20
    试验组
    14
    6
    20
    合计
    20
    20
    40
    准点班次数
    未准点班次数
    240
    20
    210
    30
    0.100
    0.050
    0.010
    2.706
    3.841
    6.635
    3
    4
    5
    一级品
    二级品
    合计
    甲机床
    150
    50
    200
    乙机床
    120
    80
    200
    合计
    270
    130
    400
    0.050
    0.010
    0.001
    3.841
    6.635
    10.828
    0
    2
    3
    4
    旧设备
    9.8
    10.3
    10.0
    10.2
    9.9
    9.8
    10.0
    10.1
    10.2
    9.7
    新设备
    10.1
    10.4
    10.1
    10.0
    10.1
    10.3
    10.6
    10.5
    10.4
    10.5
    0
    20
    100
    0.2
    0.32
    0.48
    时段
    价格变化
    第1天到
    第20天
    0
    0
    0
    0
    0
    第21天
    到第40天
    0
    0
    0
    0
    0
    对照组
    实验组
    0.100
    0.050
    0.010
    2.706
    3.841
    6.635
    0
    1
    2
    合计
    对照组
    6
    14
    20
    实验组
    14
    6
    20
    合计
    20
    20
    40
    红色外观
    蓝色外观
    棕色内饰
    12
    8
    米色内饰
    2
    3
    150
    300
    600
    不够良好
    良好
    病例组
    40
    60
    对照组
    10
    90
    0.050
    0.010
    0.001
    3.841
    6.635
    10.828
    不够良好
    良好
    合计
    病例组
    40
    60
    100
    对照组
    10
    90
    100
    合计
    50
    150
    200
    20
    30
    25
    30
    样本号
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    总和
    根部横截面积
    0.04
    0.06
    0.04
    0.08
    0.08
    0.05
    0.05
    0.07
    0.07
    0.06
    0.6
    材积量
    0.25
    0.40
    0.22
    0.54
    0.51
    0.34
    0.36
    0.46
    0.42
    0.40
    3.9

    相关试卷

    高考数学一轮复习:4三角函数-重难点突破1练习(题型归纳与重难专题突破提升):

    这是一份高考数学一轮复习:4三角函数-重难点突破1练习(题型归纳与重难专题突破提升),文件包含重难点突破01三角函数中有关ω的范围问题原卷版docx、重难点突破01三角函数中有关ω的范围问题解析版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。

    高考数学一轮复习:3导数及其应用-重难点突破9练习(题型归纳与重难专题突破提升):

    这是一份高考数学一轮复习:3导数及其应用-重难点突破9练习(题型归纳与重难专题突破提升),文件包含重难点突破09导数与三角函数原卷版docx、重难点突破09导数与三角函数解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。

    高考数学一轮复习:3导数及其应用-重难点突破7练习(题型归纳与重难专题突破提升):

    这是一份高考数学一轮复习:3导数及其应用-重难点突破7练习(题型归纳与重难专题突破提升),文件包含重难点突破07零点与隐零点问题原卷版docx、重难点突破07零点与隐零点问题解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map