河北省承德县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解)
展开
这是一份河北省承德县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共22页。试卷主要包含了选择题等内容,欢迎下载使用。
1. 下列图形中,轴对称图形的个数是( )
A. 1个B. 2个C. 3个D. 4个
2. 下列运算错误的是( )
A. B. C. D. a2÷a3=a-1 (a≠0)
3. 熔喷布,俗称口罩的“心脏”,是口罩中间的过滤层,能过滤细菌,阻止病菌传播.经测量,医用外科口罩的熔喷布厚度约为0.000156米,将0.000156用科学记数法表示应为( )
A. B. C. D.
4. 对于①,②,从左到右的变形,表述正确的是( )
A. 都因式分解B. 都是乘法运算
C. ①因式分解,②是乘法运算D. ①是乘法运算,②是因式分解
5. 若M=(x-3)(x-4),N=(x-1)(x-6),则M与N的大小关系为()
A. M>NB. M=NC. M<ND. 由x的取值而定
6. 若分式有意义,则x的取值范围是( )
A. x≠2B. x≠±2C. x≠﹣2D. x≥﹣2
7. 如图,∠C=∠D=90°,添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是( )
A. AC=ADB. AC=BCC. ∠ABC=∠ABDD. ∠BAC=∠BAD
8. 若一个凸多边形的每一个外角都等于36°,则这个多边形的内角和是( )
A. 1080°B. 1260°C. 1440°D. 1620°
9. 如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点.若PA 2,则PQ的长不可能是( )
A. 4B. 3.5
C. 2D. 1.5
10. 如图,在△ABD中,∠D=20°,CE垂直平分AD,交BD于点C,交AD于点E,连接AC,若AB=AC,则∠BAD的度数是( )
A. 100°B. 110°C. 120°D. 150°
11. 如图,△ABC≌△ADE,且AE∥BD,∠BAD=94°,则∠BAC的度数的值为( )
A. 84°B. 60°C. 48°D. 43°
12. 如图,在等边△ABC中,AD、CE是△ABC的两条中线,,P是AD上一个动点,则最小值的是( )
A. 2.5B. 5C. 7.5D. 10
13. 如图所示,在△ABC中,,,D是BC的中点,连接AD,,垂足为E,则AE的长为( )
A. 4B. 6C. 2D. 1
14. 如图,已知∠ABD=∠BAC,添加下列条件还不能判定△ABC≌△BAD的依据是( )
A. AC=BDB. ∠DAB=∠CBAC. ∠C=∠DD. BC=AD
15. 去一个边长为的正方形(),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )
A. B.
C. D.
16. 为了响应组织部开展的“百万消费助农”活动,小明的妈妈在“河南消费惠农网”花了120元钱购买了一批拖鞋,在“豫扶网”她发现同类的拖鞋单价每双少了5元,于是又花了100元钱购买了一批同类的鞋子,且比上次还多买了两双.并把购买的鞋子全部赠给敬老院.若设第一批鞋子每双x元,则可以列出方程为( )
A. B.
C. D.
二.填空题(本大题共3题,总计 12分)
17. 计算:(﹣2a2)3的结果是_____.
18. 如图,在平面直角坐标系中,A(4,0),B(0,3),以线段AB为直角边在第一象限内作等腰直角三角形ABC,AB=AC,∠BAC=90°,则点C坐标为_______.
19. 如图,已知∠AOB=30°,点P在边OA上,OP=14,点E,F在边OB上,PE=PF,EF=6.若点D是边OB上一动点,则∠PDE=45°时,DF的长为_____.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. (1)计算:;
(2)因式分解:.
21. 解分式方程:
22. 如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).
(1)在图中作出△ABC关于轴对称的.
(2)写出点的坐标(直接写答案).
(3)的面积为___________
23. 已知,如图,△ABC为等边三角形,,AD,BE相交于点P,于Q.
(1)求证:;
(2)求的度数;
(3)若,,求AD的长.
24. 实践与探索
如图1,边长为的大正方形有一个边长为的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示)
(1)上述操作能验证的等式是__________;(请选择正确的一个)
A. B. C.
(2)请应用这个公式完成下列各题:
①已知,,则__________.
②计算:
25. 某县要修筑一条长为6000米的乡村旅游公路,准备承包给甲、乙两个工程队来合作完成,已知甲队每天筑路的长度是乙队的2倍,前期两队各完成了400米时,甲比乙少用了5天.
(1)求甲、乙两个工程队每天各筑路多少米?
(2)若甲队每天的工程费用为1.5万元,乙队每天的工程费用为0.9万元,要使完成全部工程的总费用不超过120万元,则至少要安排甲队筑路多少天?
26. 如图,点P、Q分别是等边边AB、BC上的动点(端点除外),点P、点Q以相同的速度,同时从点A、点B出发.
(1)如图1,连接AQ、CP求证:
(2)如图1,当点P、Q分别在AB、BC边上运动时,AQ、CP相交于点M,大小是否变化?若变化,请说明理由;若不变,求出它的度数
(3)如图2,当点P、Q在AB、BC的延长线上运动时,直线AQ、CP相交于M,的大小是否变化?若变化,请说明理由;若不变,求出它的度数.
承德县2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:C
【解析】:解:第1个是轴对称图形;
第2个是轴对称图形;
第3个不是轴对称图形;
第4个是轴对称图形;
故选C.
【画龙点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
2.【答案】:A
【解析】:A. ,故该选项不正确,符合题意;
B. ,故该选项正确,不符合题意;
C. ,故该选项正确,不符合题意;
D. a2÷a3=a-1 (a≠0) ,故该选项正确,不符合题意;
故选:A.
3.【答案】:C
【解析】:解:0.000156用科学记数法可表示为1.56×10﹣4.
故选:C.
4.【答案】:C
【解析】:①左边多项式,右边整式乘积形式,属于因式分解;
②左边整式乘积,右边多项式,属于整式乘法;
故答案选C.
5.【答案】:A
【解析】:解: M=(x-3)(x-4)=
N=(x-1)(x-6)=
即:
故选:A.
6.【答案】:B
【解析】:解:分式有意义,则,即,
故选:B
【画龙点睛】此题考查了分式有意义的条件,解题的关键是掌握分式有意义的条件为分母不等于零.
7.【答案】:A
【解析】:解: 需要添加条件为:BC= BD或AC= AD,理由为:
若添加的条件为:BC= BD
在Rt△ABC与Rt△ABD中,
∴Rt△ABC≌Rt△ABD(HL) ;
若添加的条件为:AC=AD
在Rt△ABC与Rt△ABD中,
∴Rt△ABC≌Rt△ABD( HL).
故选:A.
8.【答案】:C
【解析】:该多边形的变数为
此多边形内角和为
故选C
9.【答案】:D
【解析】:解:当PQ⊥OM时,PQ的值最小,
∵OP平分∠MON,PA⊥ON,PA=2,
∴PQ=PA=2,
所以的最小值为2,
所以A,B,D不符合题意,D符合题意;
故选:D.
10.【答案】:C
【解析】:解:∵CE垂直平分AD,
∴,
∴,
∴,
∵AB=AC,
∴,
∴,
∴,
故选:C.
11.【答案】:D
【解析】:∵△ABC≌△ADE,∠BAD=94°,
∴AB=AD,∠BAC=∠DAE,
∴∠ABD=∠ADB=×(180°﹣94°)=43°,
∵AE//BD,
∴∠DAE=∠ADB=43°,
∴∠BAC=∠DAE=43°.
故选:D.
12.【答案】:B
【解析】:解:连结PC,
∵△ABC为等边三角形,
∴AB=AC,
∵AD为中线,
∴AD⊥BC,BD=CD=,
∵点P在AD上,BP=CP,
∴PE+PB=PE+PC,
∵PE+PC≥CE
∴C、P、E三点共线时PE+CP最短=CE,
∵CE为△ABC的中线,
∴CE⊥AB,AE=BE=,
∵△ABC为等边三角形,
∴AB=BC,∠ABC=60°,
∴BE=BD,
在△ABD和△CBE中,
,
∴△ABD≌△CBE(SAS)
∴AD=CE=5,
∴PB+PE的最小值为5.
故选择B.
13.【答案】:C
【解析】:解: , ,D为BC中点,
,
,
,D为BC中点,
,
,
, ,
,
.
故答案为:C.
14.【答案】:D
【解析】:由题意得,∠ABD=∠BAC,
A.在△ABC与△BAD中,
,
∴△ABC≌△BAD(SAS);
故选项正确;
B.在△ABC与△BAD中,
,
△ABC≌△BAD(ASA),
故选项正确;
C.在△ABC与△BAD中,
,
△ABC≌△BAD(AAS),
故选项正确;
D.在△ABC与△BAD中,
BC=AD,AB=BA,∠BAC=∠ABD(SSA),△ABC与△BAD不全等,故错误;
故选:D.
15.【答案】:D
【解析】:如下图:
根据题意,得,,
∴
∴剩余部分沿虚线又剪拼成一个矩形后,
∴矩形的面积
故选:D.
【画龙点睛】本题考查了正方形、矩形的知识;解题的关键是熟练掌握正方形、矩形的性质,从而完成求解.
16.【答案】:D
【解析】:解∶ 设第一批鞋子每双x元,根据题意得∶
.
故选∶D
二. 填空题
17.【答案】: ﹣8a6
【解析】:解:(﹣2a2)3
=(-2)3•(a2)3
=﹣8a6,
故答案为:﹣8a6.
18.【答案】: (7,4)
【解析】:解:作CD⊥x轴于点D,则∠CDA=90°,
∵A(4,0),B(0,3),
∴
是等腰直角三角形,∠BAC=90°,
又∵∠BAD+∠ABO=90°,
∴∠ABO=∠CAD,
∠BAD+∠CAD=90°,
在△BOA和△ADC中,
∴△BOA≌△ADC(AAS),
∴BO=AD=3,OA=DC=4,
∴点C的坐标为(7,4);
故答案为:(7,4)
19.【答案】: 4或10
【解析】:解:如图,过点P作PH⊥OB于点H,
∵PE=PF,
∴EH=FH=EF=3,
∵∠AOB=30°,OP=14,
∴PH=OP=7,
当点D运动到点F右侧时,
∵∠PDE=45°,
∴∠DPH=45°,
∴PH=DH=7,
∴DF=DH﹣FH=7﹣3=4;
当点D运动到点F左侧时,
D′F=D′H+FH=7+3=10.
所以DF的长为4或10.
故答案为4或10.
三.解答题
20【答案】:
(1);(2)
【解析】:
解:(1)原式
;
(2)原式
.
21【答案】:
无解
【解析】:
解:去分母得:4+x2-1=x2-2x+1,
解得:x=-1,
经检验x=-1是增根,分式方程无解.
【画龙点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
22【答案】:
(1)见解析;(2)A1(-1,2)、B1(-3,1)、C1(2,-1);(3)
【解析】:
解:(1)如图所示,△A1B1C1即为所求.
(2)由图知,A1(-1,2)、B1(-3,1)、C1(2,-1);
(3)△A1B1C1的面积=
23【答案】:
(1)见解析 (2)60°
(3)7
【解析】:
【小问1详解】
证明:△ABC为等边三角形,
,,
在△AEB与△CDA中,
∴△AEB≌△CDASAS,
∴BE=AD;
【小问2详解】
解:∵△AEB≌△CDA,
∴∠ABE=∠CAD,
∴∠BAD+∠ABE=∠BAD+∠CAD=∠BAC=60°,
∴∠BPQ=∠BAD+∠ABE=60°;
【小问3详解】
解:∵∠BPQ=60°,,
∴∠PBQ=30°,
∴PQ=12BP=3,
∴BP=6,
∴BE=BP+PE=6+1=7,
∴AD=BE=7.
24【答案】:
(1)A;(2)①4;②5050
【解析】:
(1)图1表示,图2的面积表示,两个图形阴影面积相等,得到
故选A ;
(2)①
∵
∴,解得
②原式=(1002-992)+(982-972)+…+(42-32)+(22-12)
=(100+99)(100-99)+(98+97)(98-97)+…+(4+3)(4-3)+(2+1)(2-1)
=100+99+98+97+…+4+3+2+1
=101×50
=5050
【画龙点睛】本题考查了平方差公式的几何证明,题目较为简单,需要利用正方形和长方形的面积进行变形求解.
25【答案】:
(1)甲每天筑路80米,乙每天筑路40米;
(2)甲至少要筑路50天
【解析】:
解:(1)设乙队每天筑路x米,则甲每天筑路2x米.
依题意,得:,
解得:x=40,
经检验:x=40是原分式方程的解,
则2x=80,
答:甲每天筑路80米,乙每天筑路40米;
(2)设甲筑路t天,则乙筑路天数为天,
依题意:,
解得:,
∴甲至少要筑路50天.
【画龙点睛】本题考查了分式方程的应用以及一元一次不等式的应用,分析题意,找到合适的数量关系列出方程或不等式是解决问题的关键.
26【答案】:
(1)证明见解析;(2)不变;60°;(3)不变;120°.
【解析】:
解:(1)证明:∵三角形ABC为等边三角形,
∴AB=AC,∠ABC=∠CAB=60°,
∵点P、点Q以相同的速度,同时从点A、点B出发,
∴BQ=AP,
在△ABQ与△CAB中,
∴.
(2)角度不变,60°,理由如下:
∵
∴∠CPA=∠AQB,
在△AMP中,
∠AMP=180°-(∠MAP+∠CPA)=180°-(∠MAP+∠AQB)=∠ABC=60°,
∴∠QMC=∠AMP=60°,
故∠QMC的度数不变,度数为60°.
(3)角度不变,120°,理由如下:
当点P、Q在AB、BC的延长线上运动时,
有AP=BQ,∴BP=CQ
∵∠ABC=∠BCA=60°,
∴∠CBP=∠ACQ=120°,
∴
∴∠Q=∠P,
∵∠QCM=∠BCP,
∴∠QMC=∠CBP=120°,
故∠QMC的度数不变,度数为120°.
相关试卷
这是一份河北省保定市满城区2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共24页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省保定市莲池区2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共22页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省保定市竞秀区2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共25页。试卷主要包含了选择题等内容,欢迎下载使用。