云南省2024年1月普通高中学业水平考试数学试题
展开
这是一份云南省2024年1月普通高中学业水平考试数学试题,共11页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
一、单选题
1.设集合,,则( )
A.B.C.D.
2.已知是虚数单位,则复数在复平面内对应的点位于( )
A.第一象限B.第二象限C.第三象限D.第四象限
3.函数的定义域为( )
A.B.C.D.
4.已知,则( )
A.B.C.6D.8
5.下列函数中,是偶函数的是( )
A.B.C.D.
6.已知、、都是实数,若,,则( )
A.B.C.D.
7.已知为虚数单位,设复数,,则( )
A.B.C.D.
8.已知是角终边上的一点,则( )
A.B.C.D.
9.如图,在正方体中,异面直线与所成的角等于( )
A.B.C.D.
10.函数在区间上的最大值为( )
A.B.C.2D.4
11.若,,则( )
A.B.C.D.
12.已知,则的最小值为( )
A.B.C.3D.
13.已知,则( )
A.B.C.D.
14.某大学学生管理处为了了解新入学的名大学生的生活情况,从中抽取了名大学生进行调查研究.在这个问题中,被抽取的名大学生是( )
A.总体B.个体C.样本量D.样本
15.函数的最小正周期为( )
A.B.C.D.
16.甲、乙两人独立地破译一份密码.已知甲能破译的概率为,乙能破译的概率为,则甲、乙两人都成功破译的概率为( )
A.B.C.D.
17.( )
A.B.C.D.0
18.某学校共有学生2700人,其中男生1200人,女生1500人.现按男生、女生进行分层,用分层随机抽样的方法,从该校全体学生中抽取人进行调查研究.若抽到男生20人,则( )
A.60B.45C.35D.25
19.函数是定义域为的增函数,若,则的取值范围为( )
A.B.C.D.
20.已知平面向量,平面向量.若,则( )
A.B.C.D.
21.( )
A.B.C.D.
22.为弘扬“尊老、敬老、爱老”的中华传统美德,某班组织学生到甲、乙两个敬老院看望老人.按规定,该班某同学通过摸球的方式选择到哪个敬老院看望老人,摸球规则如下:在一个不透明的袋子中有8个大小质地完全相同的球,其中5个红球,3个黄球.该同学从这个袋子中随机摸出1个球.若摸出的球是红球,该同学到甲敬老院看望老人;若摸出的球是黄球,该同学到乙敬老院看望老人.该同学到甲敬老院看望老人的概率为( )
A.B.C.D.
二、填空题
23.某中学开展劳动实习,学生到教具加工厂制作球体教具,他们制作的球体,半径为,这种球体的表面积是 .
24.若,则的取值范围为 .
25.学校从甲、乙两名射击运动员中推荐一人参加市中学生运动会,甲、乙两人参加测试的成绩(单位:环)如下:
甲:7,8,8,9,7,8,8,9,7,9;
乙:6,8,7,7,8,9,10,7,9,9.
经计算得:,,,.
根据上述信息,学校应推荐 参加市中学生运动会.
26.已知函数是定义域为的奇函数,当时,,则 .
三、解答题
27.如图,在三棱锥中,,,.
(1)证明:平面;
(2)若,,,求三棱锥的体积.
28.在中,内角、、的对边分别为、、,且.
(1)求的值;
(2)若是锐角三角形,,求的取值范围.
29.已知、为常数,,是的零点,且.
(1)若,,求、的值;
(2)若,比较与的大小.
参考答案:
1.A
【分析】利用交集的定义可求得集合.
【详解】因为集合,,则.
故选:A.
2.D
【分析】根据复数的代数形式的几何意义得到对应点的坐标,进而判定.
【详解】复数对应的点的坐标为,为第四象限的点,
故选:D.
3.C
【分析】根据根号下的式子为非负数可得结果.
【详解】易知函数的定义域为,即.
故选:C
4.A
【分析】由同角的三角函数关系即可求解.
【详解】因为,所以由题意可得
故选:A.
5.B
【分析】利用基本初等函数的奇偶性逐项判断可得出合适的选项.
【详解】对于A选项,函数为奇函数;
对于B选项,函数为偶函数;
对于C选项,函数为奇函数;
对于D选项,函数为非奇非偶函数.
故选:B.
6.C
【分析】举反例可得AB错误;由不等式的性质可得C正确,D错误.
【详解】对A,令,则,故A错误;
对B,;令,则,故B错误;
对CD,由,,相加可得,即,故C正确,D错误.
故选:C
7.A
【分析】根据复数的减法法则计算即可.
【详解】由,,
则.
故选:A.
8.B
【分析】根据正弦函数定义代入点坐标计算可得结果.
【详解】由可得.
故选:B
9.B
【分析】由正方体的性质找到异面直线所成的角,求出即可;
【详解】由题意可得,所以异面直线与所成的角等于,
由正方体的性质可得,
故选:B
10.A
【分析】利用指数函数单调性计算即可得出结果.
【详解】易知函数在区间上单调递减,
所以其最大值为.
故选:A
11.D
【分析】利用平面向量的加减运算的坐标表示可得结果.
【详解】易知.
故选:D
12.D
【分析】由基本不等式求解即可;
【详解】由题意可得,当且仅当,即时取等号,
所以的最小值为,
故选:D.
13.B
【分析】利用诱导公式计算可得结果.
【详解】由诱导公式计算可得.
故选:B
14.D
【分析】根据样本、样本容量、个体、总体的定义判断.
【详解】根据定义,被抽取的名大学生是样本.
故选:D.
15.C
【分析】由正弦函数的周期公式求出即可;
【详解】由周期公式可得最小正周期为,
故选:C.
16.B
【分析】利用独立事件的概率乘法公式可求得所求事件的概率.
【详解】因为甲、乙两人独立地破译一份密码,且甲能破译的概率为,乙能破译的概率为,
因此,甲、乙两人都成功破译的概率为.
故选:B.
17.C
【分析】由两角差的正弦公式即特殊角的三角函数即可计算得解;
【详解】,
故选:C.
18.B
【分析】由分层抽样中各层样本数的确定方法求解即可;
【详解】由题意男生有1200人,调查研究中男生被抽到20人,
所以分层抽样的比例为,
所以,
故选:B.
19.C
【分析】根据函数单调性解不等式即可.
【详解】因为函数是定义域为的增函数,
所以由,得,
解得,即的取值范围为.
故选:C.
20.A
【分析】根据平面向量垂直的坐标表示可得出关的等式,解之即可.
【详解】因为平面向量,平面向量,且,
则,解得.
故选:A.
21.C
【分析】利用对数的运算性质可求得所求代数式的值.
【详解】.
故选:C.
22.D
【分析】利用古典概型概率计算公式可得结果.
【详解】根据题意摸出的球是红球的概率为,
因此该同学到甲敬老院看望老人的概率为.
故选:D
23.
【分析】利用球体的表面积公式可求得结果.
【详解】由题意可知,半径为的球体的表面积为.
故答案为:.
24.
【分析】由一元二次不等式的解法求出即可;
【详解】,解得,
所以的取值范围为,
故答案为:.
25.甲
【分析】根据甲、乙两人平均成绩和方差的大小以及方差的意义可得出结论.
【详解】因为,,
所以两人平均水平相当,但甲发挥较为稳定,故学校应推荐甲参加市中学生运动会.
故答案为:甲.
26.
【分析】根据奇函数的性质求解即可.
【详解】因为函数是定义域为的奇函数,
且当时,,
所以.
故答案为:.
27.(1)证明见解析;
(2).
【分析】(1)利用线面垂直的判定定理可证得结论成立;
(2)求出的面积,利用锥体的体积公式可求得三棱锥的体积.
【详解】(1)证明:因为,,,、平面,
因此平面.
(2)因为,且,,则,
又因为平面,且,
故,即三棱锥的体积为.
28.(1)
(2)
【分析】(1)利用余弦定理可求出的值;
(2)利用正弦定理结合三角恒等变换化简得出,根据题意求出角的取值范围,结合正弦型函数的基本性质可求得的取值范围.
【详解】(1)因为,
由余弦定理可得.
(2)因为,,则,
由正弦定理可得,
所以,
,
因为为锐角三角形,则,解得,
所以,,则,
故.
即的取值范围是.
29.(1)
(2)
【分析】(1)利用韦达定理将,代入计算可得;
(2)利用作差法以及两根之间的关系,再由不等式性质计算可判断结论.
【详解】(1)依题意可得的两根分别为;
若,,可得,
解得;
(2)易知,
所以,则;
所以,
由可得,
又可得,所以,即;
因此.
所以.
题号
1
2
3
4
5
6
7
8
9
10
答案
A
D
C
A
B
C
A
B
B
A
题号
11
12
13
14
15
16
17
18
19
20
答案
D
D
B
D
C
B
C
B
C
A
题号
21
22
答案
C
D
相关试卷
这是一份2022年山西普通高中学业水平考试数学试题及答案,共14页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份云南省普通高中2023年学业水平考试模拟(五)数学试卷(含答案),共11页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份云南省2023—2024学年度普通高中学业水平考试(1月)++数学试卷+,共15页。试卷主要包含了二项式的展开式的常数项是,若,则等内容,欢迎下载使用。