山西省忻州市2024-2025学年高三上学期9月月考 数学试题(含解析)
展开
这是一份山西省忻州市2024-2025学年高三上学期9月月考 数学试题(含解析),文件包含山西省忻州市2024-2025学年高三上学期9月月考数学试题docx、山西省忻州市2024-2025学年高三上学期9月月考数学试题解析docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
全卷满分150分,考试时间120分钟.
注意事项:
1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.
2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.
3.选择题用2B铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答:字体工整,笔迹清楚.
4.考试结束后,请将试卷和答题卡一并上交.
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 已知集合,则( )
A. B. C. D.
2. 已知,且,则( )
A. B. 0C. 1D. 2
3. 已知命题,则的否定为( )
A. B.
C. D.
4. 在平行四边形中,,则( )
A. B.
C. D.
5 如果随机变量,且,则( )
A. B. C. D.
6. 已知,则的最小值为( )
A. B. 2C. D. 1
7. 已知数列满足,且,则( )
A. B. C. D.
8. 已知,设函数,若在上恒成立,则的取值范围是( )
A. B. C. D.
二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
9. 已知,则函数的图象可能是( )
A. B.
C. D.
10. 已知函数,且,则下列结论正确的是( )
A.
B. 在区间上单调递增
C. 若为方程的两个解,则的最小值为
D. 若关于的方程在区间上有且仅有一个解,则的取值范围为
11. 已知函数的定义域为,设,若和均为奇函数,则( )
A. B. 为奇函数
C. 一个周期为4D.
三、填空题:本题共3小题,每小题5分,共15分.
12. 将一个底面半径为,高为的圆柱形铁块熔铸成一个实心铁球,则该实心铁球的表面积与圆柱的侧面积之比为__________.
13. 设,若,则______.
14. 设是正实数,若椭圆与直线交于点,点为的中点,直线(为原点)的斜率为2,又,则椭圆的方程为__________.
四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.
15. 如图,在直三棱柱中,为直角,侧面为正方形,,.
(1)求证:平面;
(2)求直线与平面所成的角的正弦值.
16. 已知函数的图象的相邻两条对称轴之间的距离为,点为的图象的一个对称中心.
(1)求的解析式;
(2)将的图象向右平移个单位长度,得到函数的图象,若在区间上的最大值和最小值互为相反数,求的最小值.
17. 已知函数是且的反函数,且函数.
(1)若,求及值;
(2)若函数在上有最小值,最大值7,求的值.
18. 在中,已知.
(1)求;
(2)记为重心,过的直线分别交边于两点,设.
(i)求的值;
(ii)若,求和周长之比的最小值.
19. 已知函数.
(1)当时,求的极值;
(2)若存在两个极值点.
(i)求取值范围;
(ii)证明:
相关试卷
这是一份山西省忻州市2025届高三上学期9月月考数学试题(含答案),共8页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份山西省忻州市2024-2025学年高三上学期9月月考数学试题,共4页。
这是一份2023-2024学年山西省忻州市高二上学期1月期末考试数学试题(含解析),共15页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。