浙江省温州市民办2024年九上数学开学质量检测模拟试题【含答案】
展开
这是一份浙江省温州市民办2024年九上数学开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,一次函数()的图象经过,两点,则关于的不等式的解集是( )
A.B.C.D.
2、(4分)若,则下列不等式成立的是( )
A.B.C.D.
3、(4分)以下列各组线段为边,能构成直角三角形的是( )
A.1cm,2cm,3cmB. cm, cm,5cmC.6cm,8cm,10cmD.5cm,12cm,18cm
4、(4分)课堂上老师在黑板上布置了右框所示的题目,小聪马上发现了其中有一道题目错了,你知道是哪道题目吗?( )
用平方差公式分解下列各式:
(1)
(2)
(3)
(4)
A.第1道题B.第2道题C.第3道题D.第4道题
5、(4分)如图,在平行四边形ABCD中,下列结论中错误的是( )
A.∠1=∠2B.∠BAD=∠BCDC.AO=COD.AC⊥BD
6、(4分)2019年6月7日是端午节,某幼儿园对全体小朋友爱吃哪种粽子做调查,以决定最终买哪种口味的粽子.下面的调查数据最值得关注的是( )
A.众数B.中位数C.平均数D.方差
7、(4分)如图,已知点在反比例函数()的图象上,作,边在轴上,点为斜边的中点,连结并延长交轴于点,则的面积为( )
A.B.C.D.
8、(4分)已知□ABCD,根据图中尺规作图的痕迹,判断下列结论中不一定成立的是( )
A.∠DAE=∠BAEB.∠DEA= ∠DABC.DE=BED.BC=DE
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)_____.
10、(4分)对于平面内任意一个凸四边形ABCD,现从以下四个关系式: ①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是_______.
11、(4分)方程x4-8=0的根是______
12、(4分)如图,平行四边形ABCD内的一点E到边AD,AB,BC的距离相等,则∠AEB的度数等于____.
13、(4分)合作小组的4位同学在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,则B坐在2号座位的概率是 .
三、解答题(本大题共5个小题,共48分)
14、(12分)某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠. 书包每个定价20元,水性笔每支定价5元. 小丽和同学需买4个书包,水性笔若干支(不少于4支). 设购买费用为元,购买水性笔支.
(1)分别写出两种优惠方法的购买费用与购买水性笔支数之间的函数关系式;
(2)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.
15、(8分)在平面直角坐标系xOy中,边长为6的正方形OABC的顶点A,C分别在x轴和y轴的正半轴上,直线y=mx+2与OC,BC两边分别相交于点D,G,以DG为边作菱形DEFG,顶点E在OA边上.
(1)如图1,当菱形DEFG的一顶点F在AB边上.
①若CG=OD时,求直线DG的函数表达式;
②求证:OED≌BGF.
(2)如图2,当菱形DEFG的一顶点F在AB边右侧,连接BF,设CG=a,FBG面积为S.求S与a的函数关系式;并判断S的值能否等于1?请说明理由;
(3)如图3,连接GE,当GD平分∠CGE时,m的值为 .(直接写出答案).
16、(8分)如图,已知矩形ABCD中,点E是AB边上的一个动点,点F、G、H分别是CD、DE、CE的中点.
(1)求证:四边形EHFG是平行四边形;
(2)设AB=4,AD=3,求△EFG的面积.
17、(10分)已知矩形,为边上一点,,点从点出发,以每秒个单位的速度沿着边向终点运动,连接,设点运动的时间为秒,则当的值为__________时,是以为腰的等腰三角形.
18、(10分)如图,在平面直角坐标系中,已知点A(-3,0),B(0,-1),C(0,)三点.
(1)求直线AB的解析式.
(2)若点D在直线AB上,且DB=DC,尺规作图作出点D(保留作图痕迹),并求出点D的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为______.
20、(4分)已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.5~66.5这一小组的频数为_________,频率为_________.
21、(4分)已知,则= ___________
22、(4分)在比例尺为1∶1 00 000的地图上,量得甲、乙两地的距离是15cm,则两地的实际距离 ▲ km.
23、(4分)命题“在中,如果,那么是等边三角形”的逆命题是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)图(a)、图(b)、图(c)是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图图(a)、图(b)、图(c)中分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.
(1)画一个底边长为4,面积为8的等腰三角形.
(2)画一个面积为10的等腰直角三角形.
(3)画一个一边长为,面积为6的等腰三角形.
25、(10分)已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.
(1)求证:四边形AODE是矩形;
(2)若AB=4,∠BCD=120°,求四边形AODE的面积.
26、(12分)城市到城市的铁路里程是300千米.若旅客从城市到城市可选择高铁和动车两种交通工具,高铁速度是动车速度的1.5倍,时间相差0.5小时,求高铁的速度.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据图像,找到y>0时,x的取值范围即可.
【详解】
解:由图像可知:该一次函数y随x的增大而增大,当x=-3时,y=0
∴当x>-3时,y>0,即
∴关于的不等式的解集是
故选C.
此题考查的是一次函数与一元一次不等式的关系,掌握一次函数的图象及性质与一元一次不等式的解集的关系是解决此题的关键.
2、B
【解析】
总的来说,用不等号(,≥,≤,≠)连接的式子叫做不等式.根据不等式的定义即可判定A错误,其余选型根据不等式的性质判定即可.
【详解】
A: a>b,则a-5>b-5,故A错误;
B:a>b, -a<-b,则-2a<-2b, B选项正确.
C:a>b, a+3>b+3,则>,则C选项错误.
D:若0>a>b时,a2<b2,则D选项错误.
故选B
本题主要考查不等式的定义及性质.熟练掌握不等式的性质才能避免出错.
3、C
【解析】
根据勾股定理的逆定理对四组数据进行逐一判断即可.
【详解】
A、∵12+22≠32,∴不能构成直角三角形;
B、∵,∴不能构成直角三角形;
C、∵62+82=102,∴能构成直角三角形;
D、∵52+122≠182,∴不能构成直角三角形,
故选C.
本题考查的是用勾股定理的逆定理判断三角形的形状,通常是看较小的两边的平方和是否等于最长边的平方,即只要三角形的三边满足a2+b2=c2,则此三角形是直角三角形.
4、C
【解析】
根据平方差公式的特点“符号相同数的平方减符号相反数的平方等于两数之和与两数之差的乘积”即可求解.
【详解】
解:由题意可知:,
,
无法用平方差公式因式分解,
,
故第3道题错误.
故选:C.
本题考查了用公式法进行因式分解,熟练掌握平方差公式及完全平方式是解决此类题的关键.
5、D
【解析】
根据平行四边形的对边平行和平行线的性质可对A进行判断;根据平行四边形的对角相等可对B进行判断;根据平行四边形的对边相等可对A进行判断;根据平行四边形的对角线互相平分可对D进行判断.
【详解】
A、在▱ABCD中,∵AB∥CD,∴∠1=∠2,所以A选项结论正确;
B、在▱ABCD中,∠BAD=∠BCD,所以B选项结论正确;
C、在▱ABCD中,AO=CO,所以C选项的结论正确;
D、在▱ABCD中,OA=OC,OB=OD,所以D选项结论错误.
故选D.
本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.
6、A
【解析】
幼儿园最值得关注的应该是哪种粽子爱吃的人数最多,即众数.
【详解】
解:由于众数是数据中出现次数最多的数,故幼儿园最值得关注的应该是统计调查数据的众数.
故选A.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
7、A
【解析】
先根据题意证明△BOE∽△CBA,根据相似比得出BO×AB的值即为k的值,再利用BC×OE=BO×AB和面积公式即可求解.
【详解】
∵BD为Rt△ABC的斜边AC上的中线,
∴BD=DC,∠DBC=∠ACB,
又∠DBC=∠EBO,
∴∠EBO=∠ACB,
又∠BOE=∠CBA=90∘,
∴△BOE∽△CBA,
∴,即BC×OE=BO×AB.
即BC×OE=BO×AB=k=6.
∴ ,
故选:A.
本题主要考查相似三角形判定定理,熟悉掌握定理是关键.
8、C
【解析】
根据角平分线的性质与平行四边形的性质对各选项进行逐一分析即可.
【详解】
解:A、由作法可知AE平分∠DAB,所以∠DAE=∠BAE,故本选项不符合题意;
B、∵CD∥AB,∴∠DEA=∠BAE=∠DAB,故本选项不符合题意;
C、无法证明DE=BE,故本选项符合题意;
D、∵∠DAE=∠DEA,∴AD=DE,∵AD=BC,∴BC=DE,故本选项不符合题意.
故选B.
本题考查的是作图−基本作图,熟知角平分线的作法和平行四边形的性质是解答此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
原式化为最简二次根式,合并即可得到结果.
【详解】
解:原式=+2=3.
故答案为3
此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.
10、
【解析】
从四个条件中选两个共有六种可能:①②、①③、①④、②③、②④、③④,
其中只有①②、①③和③④可以判断四边形ABCD是平行四边形,所以能够得出这个四边形ABCD是平行四边形的概率是 .
点睛:本题用到的知识点:概率=所求情况数与总情况数之比;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;一组对边平行,一组对角相等的四边形是平行四边形.
11、±2
【解析】
因为(±2)4=16,所以16的四次方根是±2.
【详解】
解:∵x4-8=0,∴x4=16,
∵(±2)4=16,∴x=±2.
故答案为:±2.
本题考查的是四次方根的概念,解答此类题目时要注意一个正数的偶次方根有两个,这两个数互为相反数.
12、90°
【解析】
点E到边AD,AB,BC的距离相等,可知可知AE、BE分别为∠DAB、∠ABC的角平分线,然后根据角平分线的定义及三角形内角和求解即可.
【详解】
依题意,可知AE、BE分别为∠DAB、∠ABC的角平分线,
又AD∥BC,
所以,∠DAB+∠CBA=180°,
所以,∠DAB+∠CBA=90°,
即∠EAB+∠EBA=90°,
所以,∠AEB=90°.
故答案为:90°.
本题考查了角平分线的判定,平行四边形的性质,三角形内角和等知识,证明AE、BE分别为∠DAB、∠ABC的角平分线是解答本题的关键.
13、.
【解析】
根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,
∵坐到1,2,3号的坐法共有 6 种方法:BCD、BDC、CBD、CDB、DBC、DCB,其中有 2 种方法(CBD、DBC)B坐在2号座位,
∴B坐在2号座位的概率是.
三、解答题(本大题共5个小题,共48分)
14、(1)方法①;方法②;(2)方案①购买更省钱,理由见解析
【解析】
(1)分别表示两种优惠方法的费用与购买水笔的只数之间的关系,
(2)分别求出两种方案下当x=12时y的值,比较并做出判断.
【详解】
解:(1)方法①:,即;
方法②:,即
(2)按方法①购买需要元;
按方法②购买需要元
答:按照方案①购买更省钱
考查一次函数的图象和性质、根据题意写出函数关系式是解题的关键.
15、(6)①y=2x+2;②见解析;(2)S≠6,见解析;(6)
【解析】
(6)①将x=0代入y=mx+2得y=2,故此点D的坐标为(0,2),由CG=OD=2可知点G的坐标为(2,6),将点G(2,6)代入y=mx+2可求得m=2;
②延长GF交y轴于点M,根据AAS可证明△OED≌△BGF;
(2)如图2所示:过点F作FH⊥BC,垂足为H,延长FG交y轴与点N.先证明Rt△GHF≌Rt△EOD(AAS),从而得到FH=DO=2,由三角形的面积公式可知:S=6﹣a.②当s=6时,a=5,在△CGD中由勾股定理可求得DG=,由菱形的性质可知;DG=DE=,在Rt△DOE中由勾股定理可求得OE=>6,故S≠6;
(6)如图6所示:连接DF交EG于点M,过点M作MN⊥y轴,垂足为N.由菱形的性质可知:DM⊥GM,点M为DF的中点,根据角平分线的性质可知:MD=CD=5,由中点坐标公式可知点M的纵坐标为6,得到ND=6,根据勾股定理可求得MN=,则得到点M的坐标为(,6)然后利用待定系数法求得DM、GM的解析式,从而可得到点G的坐标,最后将点G的坐标代入y=mx+2可求得m的值.
【详解】
解:(6)①∵将x=0代入y=mx+2得;y=2,
∴点D的坐标为(0,2).
∵CG=OD=2,
∴点G的坐标为(2,6).
将点G(2,6)代入y=mx+2得:2m+2=6.
解得:m=2.
∴直线DG的函数表达式为y=2x+2.
②如图6,延长GF交y轴于点M,
∵DM∥AB,
∴∠GFB=∠DMG,
∵四边形DEFG是菱形,
∴GF∥DE,DE=GF,
∴∠DMG=∠ODE,
∴∠GFB=∠ODE,
又∵∠B=∠DOE=90°,
∴△OED≌△BGF(AAS);
(2)如图2所示:过点F作FH⊥BC,垂足为H,延长FG交y轴与点N.
∵四边形DEFG为菱形,
∴GF=DE,GF∥DE.
∴∠GNC=∠EDO.
∴∠NGC=∠DEO.
∴∠HGF=∠DEO.
在Rt△GHF和Rt△EOD中,
,
∴Rt△GHF≌Rt△EOD(AAS).
∴FH=DO=2.
∴S△GBF=GB•HF=×2×(6﹣a)=6﹣a.
∴S与a之间的函数关系式为:S=6﹣a.
当s=6时,则6﹣a=6.
解得:a=5.
∴点G的坐标为(5,6).
在△DCG中,由勾股定理可知;DG==.
∵四边形GDEF是菱形,
∴DE=DG=.
在Rt△DOE中,由勾股定理可知OE=>6.
∴OE>OA.
∴点E不在OA上.
∴S≠6.
(6)如图6所示:连接DF交EG于点M,过点M作MN⊥y轴,垂足为N.
又∵四边形DEFG为菱形,
∴DM⊥GM,点M为DF的中点.
∵GD平分∠CGE,DM⊥GM,GC⊥OC,
∴MD=CD=5.
∵由(2)可知点F的坐标为5,点D的纵坐标为2,
∴点M的纵坐标为6.
∴ND=6.
在Rt△DNM中,MN==.
∴点M的坐标为(,6).
设直线DM的解析式为y=kx+2.将(,6)代入得:k+2=6.
解得:k=.
∴设直线MG的解析式为y=﹣x+b.将(,6)代入得:﹣65+b=6.
解得:b=68.
∴直线MG的解析式为y=﹣x+68.
将y=6代入得:﹣x+68=6.
解得:x=.
∴点G的坐标为(,6).
将(,6)代入y=mx+2得:m+2=6.
解得:m=.
故答案为:.
本题是一次函数综合题,考查了菱形的性质,全等三角形的性质和判定,勾股定理,待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,角平分线的性质,熟练掌握全等三角形的判定与性质是解题的关键.
16、(1)见解析;(2)S△FEG=.
【解析】
(1)根据三角形的中位线定理求出FH∥DE,FG∥CE,根据平行四边形的判定求出即可;
(2)根据中线分三角形的面积为相等的两部分求解即可.
【详解】
(1)证明:因为点F、G、H分别是CD、DE、CE的中点,
所以,FH∥GE,FG∥EH,
所以,四边形EHFG是平行四边形;
(2)因为F为CD的中点,
所以DF=CD=AB=2,
因为G为DE的中点,所以,S△FDG=S△FEG,
所以,S△FEG=S△EFD=.
本题考查了矩形的性质,三角形的面积,平行四边形的判定等知识点,能正确运用等底等高的三角形的面积相等进行计算是解此题的关键.
17、或
【解析】
根据矩形的性质求出∠D=90°,AB=CD=8,求出DE后根据勾股定理求出AE;过E作EM⊥AB于M,过P作PQ⊥CD于Q,求出AM=DE=3,当EP=EA时,AP=2DE=6,即可求出t;当AP=AE=5时,求出BP=3,即可求出t;当PE=PA时,则x2=(x-3)2+42,求出x,即可求出t.
【详解】
∵四边形ABCD是长方形,
∴∠D=90°,AB=CD=8,
∵CE=5,
∴DE=3,
在Rt△ADE中,∠D=90°,AD=4,DE=3,由勾股定理得:AE=5
过E作EM⊥AB于M,过P作PQ⊥CD于Q,
则AM=DE=3,
若△PAE是等腰三角形,则有三种可能:
当EP=EA时,AP=2DE=6,
所以t==2;
当AP=AE=5时,BP=8−5=3,
所以t=3÷1=3;
当PE=PA时,设PA=PE=x,BP=8−x,则EQ=5−(8−x)=x−3,
则
解得:x=,
则t=(8−)÷1=,
综上所述t=2或时,△PAE为等腰三角形。
故答案为:2或.
本题考查等腰三角形的性质,分情况求得t的值是解题关键.
18、(1)y=x-1;(2)画图见解析,点D的坐标为(,).
【解析】
(1)设直线AB解析式为:y=kx+b,把A,B坐标代入,求解即可;
(2)按照题目要求画图即可,根据题意可得点D在线段BC垂直平分线上,据此可求出D点坐标.
【详解】
(1)设直线AB解析式为:y=kx+b,
代入点A(-3,0),B(0,-1),
得:,
解得,
∴直线AB解析式为:y=x-1;
(2)如图所示:
∵B(0,-1),C(0,),DB=DC,
∴点D在线段BC垂直平分线上,
∴D的纵坐标为,
又∵点D在直线AB上,
令y=,得x=,
∴点D的坐标为(,).
本题考查了用待定系数法求一次函数解析式,尺规作图,垂直平分线的性质,掌握知识点是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3;
【解析】
根据矩形是中心对称图形寻找思路:△OBF≌△ODE,图中阴影部分的面积就是△ADC的面积.
【详解】
根据矩形的性质得△OBF≌△ODE,
属于图中阴影部分的面积就是△ADC的面积.
S△ADC=CD×AD=×2×3=3.
故图中阴影部分的面积是3.
本题考查全等三角形的判定与性质、矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质.
20、8 0.4
【解析】
频数是指某个数据出现的次数,频率是频数与总数之比,据频数、频率的定义计算即可.
【详解】
解:在64.5~66.5这一小组中,65出现5次,66出现3次,出现数据的次数为5+3=8次,故其频数为8,,故其频率为0.4.
故答案为: (1). 8 (2). 0.4
本题考查了频数与频率,依据两者的定义即可解题.
21、-1
【解析】
将原式利用提公因式法进行因式分解,再将代入即可.
【详解】
解:∵x+y=-2,xy=3,
∴原式=xy(x+y)=3×(-2)= -1.
此题考查了因式分解和整式的代入求值法,熟练掌握因式分解和整式的运算法则是解本题的关键.
22、15
【解析】
解:设两地的实际距离为xcm,
根据题意得:,
解得:x=1500000,
∵1500000cm=15km,
∴两地的实际距离15km.
23、如果是等边三角形,那么.
【解析】
把原命题的题设与结论进行交换即可.
【详解】
“在中,如果,那么是等边三角形”的逆命题是“如果是等边三角形,那么”.
故答案为:如果是等边三角形,那么.
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析;(3)见解析
【解析】
(1)利用三角形面积求法以及等腰三角形的性质画出底边长为4,高为4的等腰三角形即可;
(2)利用三角形面积求法以及等腰三角形的性质画出直角边长为2的等腰直角三角形即可;
(3)利用三角形面积求法以及等腰三角形的性质画出底边长为2,高为3的等腰三角形即可.
【详解】
解:(1)如图(a)所示:
(2)如图(b)所示 :
(3)如图(c)所示 :
本题考查了应用与设计作图,主要利用了三角形的面积公式、等腰三角形的定义、以及勾股定理,都是基本作图,难度不大.熟练掌握勾股定理是关键.
25、(1)详见解析;(2)矩形AODE面积为
【解析】
(1)根据菱形的性质得出AC⊥BD,再根据平行四边形的判定定理得四边形AODE为平行四边形,由矩形的判定定理得出四边形AODE是矩形;
(2)证明△ABC是等边三角形,得出OA=×4=2,由勾股定理得出OB=2,由菱形的性质得出OD=OB=2,即可求出四边形AODE的面积.
【详解】
(1)证明:∵DE∥AC,AE∥BD,
∴四边形AODE是平行四边形,
∵在菱形ABCD中,AC⊥BD,
∴平行四边形AODE是矩形,
故四边形AODE是矩形;
(2)解:∵∠BCD=120°,AB∥CD,
∴∠ABC=180°-120°=60°,
∵AB=BC,
∴△ABC是等边三角形,
∴OA=×4=2,
∵在菱形ABCD中,AC⊥BD
∴由勾股定理OB==2,
∵四边形ABCD是菱形,
∴OD=OB=2,
∴四边形AODE的面积=OA•OD=2=4.
本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.
26、300千米/小时
【解析】
设动车速度为千米/小时,则高铁速度为千米/小时,根据题意列出分式方程即可求解.
【详解】
设动车速度为千米/小时,则高铁速度为千米/小时,由题意,可列方程为
.
解得.
经检验,.是原方程的根.
所以高铁的速度为:千米/小时
答:高铁的速度为300千米/小时.
此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份浙江省温州市永嘉县2024-2025学年九上数学开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份浙江省温州市平阳县2025届数学九上开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份浙江省温州市鹿城区温州市实验中学2025届数学九上开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。