终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2024年浙江省温州市鹿城区九上数学开学达标检测试题【含答案】

    立即下载
    加入资料篮
    2024年浙江省温州市鹿城区九上数学开学达标检测试题【含答案】第1页
    2024年浙江省温州市鹿城区九上数学开学达标检测试题【含答案】第2页
    2024年浙江省温州市鹿城区九上数学开学达标检测试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年浙江省温州市鹿城区九上数学开学达标检测试题【含答案】

    展开

    这是一份2024年浙江省温州市鹿城区九上数学开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列等式中,不成立的是
    A.B.
    C.D.
    2、(4分)下列各点中,在反比例函数y=图象上的是( )
    A.(2,3)B.(﹣1,6)C.(2,﹣3)D.(﹣12,﹣2)
    3、(4分)如图,已知一次函数y=kx+b(k,b为常数,且k≠0)的图象与x轴交于点A(3,0),若正比例函数y=mx(m为常数,且m≠0)的图象与一次函数的图象相交于点P,且点P的横坐标为1,则关于x的不等式(k-m)x+b<0的解集为( )
    A.B.C.D.
    4、(4分)下列根式是最简二次根式的是( )
    A.B.C.D.
    5、(4分)在平面直角坐标系中,线段AB两端点的坐标分别为A(1,0),B(3,2).将线段AB平移后,A、B的对应点的坐标可以是( )
    A.(1,−1),(−1,−3)B.(1,1),(3,3)C.(−1,3),(3,1)D.(3,2),(1,4)
    6、(4分)若,则不等式的解集在数轴上表示为( )
    A.B.
    C.D.
    7、(4分)直线与在同一平面直角坐标系中的图象如图所示,则关于 x的不等式的解集为( )
    A.x>﹣2B.x<﹣2C.x≥﹣1D.x<﹣1
    8、(4分)如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2017秒时点P的坐标是( )
    A.(2016,0)B.(2017,1)C.(2017,-1)D.(2018,0)
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在矩形中,,,为边上一点,将沿翻折,点落在点处,当为直角三角形时,________.
    10、(4分)如图,矩形的顶点分别在反比例函数的图像上,顶点在轴上,则矩形的面积是______.
    11、(4分)如图,直线与坐标轴相交于点,将沿直线翻折到的位置,当点的坐标为时,直线的函数解析式是_________________.
    12、(4分)把方程x2﹣3=2x用配方法化为(x+m)2=n的形式,则m=_____,n=_____.
    13、(4分)如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、正方形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)(1)分解因式:① ②
    (2)解不等式组,并把解集在数轴上表示出来.
    15、(8分)某校为了了解学生对语文、数学、英语、物理四科的喜爱程度(每人只选一科),特对八年级某班进行了调查,并绘制成如下频数和频率统计表和扇形统计图:
    (1)求出这次调查的总人数;
    (2)求出表中的值;
    (3)若该校八年级有学生1000人,请你算出喜爱英语的人数,并发表你的看法.
    16、(8分)先化简,再求值:÷(x﹣),其中x=+1.
    17、(10分)如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.
    (1)试判断四边形AEBO的形状,并说明你的理由;(2)求证:EO=DC.
    18、(10分)如图,一架2.5m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m,如果梯子的顶端A沿墙下滑0.4m,则梯子底端B也外移0.4m吗?为什么?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为__.
    20、(4分)若1<x<2,则|x﹣3|+的值为_____.
    21、(4分)计算的结果是_____。
    22、(4分)如图,在中,,、分别是、的中点,延长到点,使,则_____________.
    23、(4分)某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,B、D分别在轴负半轴、轴正半轴上,点E是轴的一个动点,连接CE,以CE为边,在直线CE的右侧作正方形CEFG.
    (1)如图1,当点E与点O重合时,请直接写出点F的坐标为_______,点G的坐标为_______.
    (2)如图2,若点E在线段OD上,且OE=1,求正方形CEFG的面积.
    (3)当点E在轴上移动时,点F是否在某条直线上运动?如果是,请求出相应直线的表达式;如果不是,请说明理由.

    25、(10分)已知,,求下列代数式的值.
    (1)
    (2)
    26、(12分)解方程:x2﹣6x+6=1.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据不等式的性质,对选项进行求解即可.
    【详解】
    解:、,故成立,不合题意;
    、,故成立,不合题意;
    、,故成立,不合题意;
    、,故不成立,符合题意.
    故选:.
    本题考查不等式,熟练掌不等式的性质及运算法则是解题关键.
    2、A
    【解析】
    根据反比例函数图象上点的坐标特征进行判断.即当时在反比例函数y=图象上.
    【详解】
    解:∵2×3=6,﹣1×6=﹣6,2×(﹣3)=﹣6,﹣12×(﹣2)=24,
    ∴点(2,3)在反比例函数y=图象上.
    故选:A.
    本题考查了反比例函数图象上点的坐标特征:反比例函数为常数,的图象是双曲线,图象上的点的横纵坐标的积是定值k,即.
    3、B
    【解析】
    根据函数图像分析即可解题.
    【详解】
    由函数图像可知一次函数单调递减,正比例函数单调递增,
    将(k-m)x+b<0变形,即kx+b<mx,
    对应图像意义为一次函数图像在正比例函数图像下方,即交点P的右侧,
    ∵点P的横坐标为1,
    ∴即为所求解集.故选B
    本题考查了一次函数与正比例函数的图像问题,数形结合的解题方法,中等难度, 将不等式问题转化为图像问题是解题关键,
    4、A
    【解析】
    判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
    【详解】
    A、是最简二次根式,符合题意;
    B、=,不符合题意;
    C、=3,不符合题意;
    D、=2,不符合题意;
    故选A.
    本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.
    5、B
    【解析】
    根据平移中,对应点的对应坐标的差相等分别判断即可得解
    【详解】
    根据题意可得:将线段AB平移后,A,B的对应点的坐标与原A. B点的坐标差必须相等。
    A. A点横坐标差为0,纵坐标差为1,B点横坐标差为4,纵坐标差为5,A. B点对应点的坐标差不相等,故不合题意;
    B. A点横坐标差为0,纵坐标差为−1,B点横坐标差为0,纵坐标差为−1,A. B点对应点的坐标差相等,故合题意;
    C. A点横坐标差为2,纵坐标差为−3,B点的横坐标差为0,纵坐标差为1,A. B点对应点的坐标差不相等,故不合题意;
    D. ,A点横坐标差为−2,纵坐标差为−2,B点横坐标差为2,纵坐标差为−2,A. B点对应点的坐标差不相等,故不合题意;
    故选:B
    此题考查坐标与图形变化-平移,解题关键在于掌握平移的性质
    6、C
    【解析】
    先根据非负性求出a,b的值,再求出不等式的解集即可.
    【详解】
    根据题意,可知,,
    解得,,

    则不等式的解集为.
    在数轴上表示为:
    故选C.
    此题只要不等式的求解,解题的关键是熟知非负性的应用及不等式的求解.
    7、C
    【解析】
    根据函数图象交点左侧直线y=kx+b图象在直线y=mx图象的下面,即可得出不等式kx+b≤mx的解集.
    【详解】
    解:由图可知,
    在x≥-1时,直线y=mx在直线y=kx+b上方,
    关于x的不等式kx+b≤mx的解是x≥-1.
    故选:C.
    本题考查了一次函数与一元一次不等式:观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.
    8、B
    【解析】
    试题解析:以时间为点P的下标.
    观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,-1),P4(4,0),P5(5,1),…,
    ∴P4n(n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,-1).
    ∵2017=504×4+1,
    ∴第2017秒时,点P的坐标为(2017,1).
    故选B.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、3或6
    【解析】
    对直角中那个角是直角分三种情况讨论,再由折叠的性质和勾股定理可BE的长.
    【详解】
    解:如图,若∠AEF=90°
    ∵∠B=∠BCD=90°=∠AEF
    ∴四边形BCFE是矩形
    ∵将ABEC沿着CE翻折
    ∴CB=CF
    ∵四边形BCFE是正方形
    ∴BE=BC-AD=6,
    如图,若∠AFE=90°
    ∵将△BEC沿着CE翻折
    ∴CB=CF=6,∠B=∠EFC=90°,BE=EF
    ∵∠AFE+∠EFC=180°
    ∴点A,点F,点C三点共线

    ∴AF=AC-CF=4


    ∴BE=3,
    若∠EAF=90°,
    ∵CD=8> CF=6
    ∴点F不可能落在直线AD上
    ∴.不存在∠EAF=90
    综上所述:BE=3或6
    故答案为:3或6
    本题主要考查的是翻折的性质,矩形的性质,正方形的判定和性质,勾股定理,依据题意画出符合题意的图形是解题的关键.
    10、3
    【解析】
    延长CD与y轴交于E,可得矩形OBCE,所以,矩形的面积=矩形OBCE的面积-矩形OADE的面积.
    【详解】
    延长CD与y轴交于E,可得矩形OBCE,
    所以,矩形的面积=矩形OBCE的面积-矩形OADE的面积
    因为矩形的顶点分别在反比例函数的图像上,
    所以矩形OBCE的面积=6,矩形OADE的面积=3
    所以矩形的面积=6-3=3
    故答案为:3
    考查反比例函数k的几何意义,即过反比例函数图象上一点,分别向x轴、y轴作垂线,与坐标轴围成的矩形的面积等于|k|.
    11、.
    【解析】
    首先设A(0,y),B(x,0)进而计算AC的长度,可列方程求解y的值,同理计算BC的长度列出方程即可计算x的值,进而确定直线AB的解析式.
    【详解】
    解:设A(0,y),B(x,0)
    则AC2= ,根据题意OA=AC=y
    所以可得 解得y=2
    再根据BC2= ,根据题意OB=BC=x
    所以可得 解得x=2
    所以可得A(0,2 )B(2,0)
    采用待定系数法可得 即
    所以一次函数的解析式为
    故答案为
    本题主要考查一次函数的解析式求解,关键在于利用直角三角形,求解A、B点的坐标.
    12、-11
    【解析】
    先将常数项移到等号的右边、一次项移到等式左边得x2−2x=3,再配方得(x−1)2=1,故可以得出结果.
    【详解】
    ∵x2−3=2x,
    ∴x2−2x=3,
    则x2−2x+1=3+1,即(x−1)2=1,
    ∴m=−1、n=1,
    故答案为:−1、1.
    本题考查了解一元二次方程,配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方;选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
    13、
    【解析】
    先从平行四边形、矩形、菱形、正方形、等腰梯形找出既是轴对称图形又是中心对称图形的图形,然后根据概率公式求解即可.
    【详解】
    ∵五张完全相同的卡片上分别画有平行四边形、矩形、菱形、正方形、等腰梯形,其中既是轴对称图形又是中心对称图形的有矩形、菱形、正方形,
    ∴现从中任意抽取一张,卡片上所写的图形既是轴对称图形又是中心对称图形的概率为,
    故答案为.
    本题考查平行四边形、矩形、菱形、正方形、等腰梯形的性质及概率的计算方法,熟练掌握图形的性质及概率公式是解答本题的关键. 如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)① ;②;(2)
    【解析】
    (1)①直接提取公因式3m,再利用完全平方公式分解因式得出答案;②先去括号合并同类项,再利用平方差公式进行计算即可;
    (2)分别解不等式进而得出不等式组的解;
    【详解】
    解:(1)①原式
    ②原式
    (2)解不等式①,得:
    解不等式②,得:
    则不等式组的解集为
    此题考查提公因式法与公式法分解因式,解一元一次不等式组,在数轴上表示不等式的解集,解题关键在于掌握运算法则.
    15、(1)60人;(2)a=30,b=0.2,c=0.1,d=12;(3)喜爱英语的人数为100人,看法见解析.
    【解析】
    (1)用喜爱英语科目的人数除以其所占比例;
    (2)根据频数=频率×总人数求解可得;
    (3)用八年级总人数乘以样本中喜爱英语科目人数所占比例,计算即可.
    【详解】
    解:(1)这次调查的总人数为:6÷(36°÷360°)=60(人);
    (2)a=60×0.5=30(人);b=12÷60=0.2;c=6÷60=0.1;d=0.2×60=12(人);
    (3)喜爱英语的人数为1000×0.1=100(人),
    看法:由扇形统计图知喜爱语文的人数占总人数的一半,是四个学科中喜爱人数最多的科目.
    本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计图或统计表中得到必要的信息是解决问题的关键.用到的知识点为:频数=频率×总人数.
    16、.
    【解析】
    先算括号里面的,再算除法,把分式化为最简公式,把x的值代入进行计算即可
    【详解】
    原式=

    = ,
    当x= +1时,原式=.
    此题考查分式的化简求值,掌握运算法则是解题关键
    17、证明见解析
    【解析】
    (1)由菱形的性质可证明∠BOA=90°,然后再证明四边形AEBO为平行四边形,从而可证明四边形AEBO是矩形;
    (2)依据矩形的性质可得到EO=BA,然后依据菱形的性质可得到AB=CD.
    【详解】
    (1)四边形AEBO是矩形.
    证明:∵BE∥AC,AE∥BD,
    ∴四边形AEBO是平行四边形.
    又∵菱形ABCD对角线交于点O,
    ∴AC⊥BD,即∠AOB=90°.
    ∴四边形AEBO是矩形.
    (2)∵四边形AEBO是矩形,
    ∴EO=AB,
    在菱形ABCD中,AB=DC.
    ∴EO=DC.
    本题主要考查的是菱形的性质判定、矩形的性质和判定,熟练掌握相关图形的性质是解题的关键.
    18、不是,理由见解析.
    【解析】
    先根据勾股定理求出OB的长,再根据梯子的长度不变求出OD的长,根据BD=OD-OB即可得出结论.
    【详解】
    解:如图,设梯子下滑至CD,
    ∵Rt△OAB中,AB=2.5m,AO=2.4m,
    ∴OB=m,
    同理,Rt△OCD中,
    ∵CD=2.5m,OC=2.4-0.4=2m,
    ∴OD=m,
    ∴BD=OD-OB=1.5-0.7=0.8(m).
    答:梯子底端B向外移了0.8米.
    本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    由基本作图得到,平分,故可得出四边形是菱形,由菱形的性质可知,故可得出的长,再由勾股定理即可得出的长,进而得出结论.
    【详解】
    解:连结,与交于点,
    四边形是平行四边形,,
    四边形是菱形,
    ,,.

    在中,,

    故答案为:1.
    本题考查的是作图基本作图,熟知平行四边形的性质、勾股定理、平行线的性质是解决问题的关键.
    20、1
    【解析】
    先根据1<x<1得出x﹣3<0,x﹣1>0,再去绝对值符号并把二次根式进行化简,合并同类项即可.
    【详解】
    解:∵1<x<1,
    ∴x﹣3<0,x﹣1>0,
    ∴原式=3﹣x+x﹣1=1.
    故答案为1.
    本题考查的是二次根式的性质与化简,熟知二次根式具有非负性是解答此题的关键.
    21、
    【解析】
    根据运算顺序,先对括号里进行通分,给a的分子分母都乘以a,然后利用分式的减法法则,分母不变,只把分子相减,进而除法法则,除以一个数等于乘以这个数的倒数,并把a2-1分解因式,约分即可得到化简结果.
    【详解】
    解:
    故答案为:
    此题考查学生灵活运用通分、约分的方法进行分式的加减及乘除运算,是一道基础题.注意运算的结果必须是最简分式.
    22、2
    【解析】
    连接EF、AE,证四边形AEFD是平行四边形,注意应用直角三角形斜边上的中线等于斜边的一半和平行四边形的性质:平行四边形的对边相等,求得AE长即可.
    【详解】
    连接EF,AE.
    ∵点E,F分别为BC,AC的中点,
    ∴EF∥AB,EF=AB.
    又∵AD=AB,
    ∴EF=AD.
    又∵EF∥AD,
    ∴四边形AEFD是平行四边形.
    在Rt△ABC中,
    ∵E为BC的中点,BC=4,
    ∴AE=BC=2.
    又∵四边形AEFD是平行四边形,
    ∴DF=AE=2.
    本题主要考查了平行四边形判定,有中点时需考虑运用三角形的中位线定理或则直角三角形斜边上的中线等于斜边的一半.
    23、100(1+x)2=1
    【解析】分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.
    详解:设该果园水果产量的年平均增长率为x,根据题意,得:
    100(1+x)2=1,
    故答案为:100(1+x)2=1.
    点睛:本题考查了由实际问题抽象出一元二次方程;得到2013年产量的等量关系是解决本题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)(2) (3)是, 理由见解析.
    【解析】
    (1)利用四边形OBCD是边长为4的正方形,正方形CEFG,的性质可得答案,
    (2)利用勾股定理求解的长,可得面积,
    (3)分两种情况讨论,利用正方形与三角形的全等的性质,得到的坐标,根据坐标得到答案.
    【详解】
    解:(1) 四边形OBCD是边长为4的正方形,

    正方形CEFG,


    三点共线,

    故答案为:
    (2)由

    正方形CEFG的面积
    (3)如图,当在的左边时,作于,

    正方形CEFG ,


    四边形OBCD是边长为4的正方形,

    在与中,







    ①+②得:

    在直线上,
    当在的右边时,同理可得:在直线上.
    综上:当点E在轴上移动时,点F是在直线上运动.
    本题考查的是正方形的性质,三角形的全等的判定与性质,勾股定理的应用,点的移动轨迹问题,即点在一次函数的图像上移动,掌握以上知识是解题的关键.
    25、(1)9;(2)80
    【解析】
    (1)按照多项式乘以多项式的运算法则进行计算后代入即可求得答案;
    (2)首先提取公因式xy,然后利用完全平方公式因式分解后代入即可求得答案.
    【详解】
    解:(1)原式=xy+2(x-y)-4=5+8-4=9;
    (2)原式=xy(x2-2xy+y2)=xy(x-y)2=5×16=80;
    本题考查了多项式乘以多项式及因式分解的知识,解题的关键是对算式进行变形,难度不大.
    26、
    【解析】
    对题目进行配方,再利用直接开平方法求解
    【详解】
    解: .
    .
    .
    .
    .

    对解一元二次方程中配方法的考察.应熟练掌握完全平方公式
    题号





    总分
    得分
    科目
    频数
    频率
    语文
    0.5
    数学
    12
    英语
    6
    物理
    0.2

    相关试卷

    2024年浙江省温州市温州实验中学数学九年级第一学期开学达标检测模拟试题【含答案】:

    这是一份2024年浙江省温州市温州实验中学数学九年级第一学期开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年浙江省湖州市实验学校数学九上开学达标检测试题【含答案】:

    这是一份2024年浙江省湖州市实验学校数学九上开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年浙江省台州市书生中学数学九上开学达标检测模拟试题【含答案】:

    这是一份2024-2025学年浙江省台州市书生中学数学九上开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map