![浙江省温州市鹿城区2025届数学九年级第一学期开学学业质量监测试题【含答案】第1页](http://m.enxinlong.com/img-preview/2/3/16295149/0-1729994869108/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![浙江省温州市鹿城区2025届数学九年级第一学期开学学业质量监测试题【含答案】第2页](http://m.enxinlong.com/img-preview/2/3/16295149/0-1729994869143/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![浙江省温州市鹿城区2025届数学九年级第一学期开学学业质量监测试题【含答案】第3页](http://m.enxinlong.com/img-preview/2/3/16295149/0-1729994869167/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
浙江省温州市鹿城区2025届数学九年级第一学期开学学业质量监测试题【含答案】
展开
这是一份浙江省温州市鹿城区2025届数学九年级第一学期开学学业质量监测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)不等式组的解集是x>4,那么m的取值范围是( )
A.m≤4B.m<4C.m≥4D.m>4
2、(4分)在下列数据6,5,7,5,8,6,6中,众数是( )
A.5B.6C.7D.8
3、(4分)如图,对折矩形纸片,使与重合,得到折痕,将纸片展平后再一次折叠, 使点落到上的点处,则的度数是( )
A.25°B.30°C.45°D.60°
4、(4分)下列调查中,适宜采用抽样调查方式的是( )
A.调查八年级某班学生的视力情况
B.调查乘坐飞机的旅客是否携带违禁物品
C.调查某品牌LED灯的使用寿命
D.学校在给学生订制校服前尺寸大小的调查
5、(4分)下列图形是轴对称的是( )
A.B.C.D.
6、(4分)函数的图象如图所示,则结论:①两函数图象的交点的坐标为(2,2);②当x>2时,;③当x=1时,BC=3;④当x逐渐增大时,随着的增大而增大,随着的增大而减小.则其中正确结论的序号是( )
A.①②B.①③C.②④D.①③④
7、(4分)不等式组有( )个整数解.
A.2B.3C.4D.5
8、(4分)如图,在菱形ABCD中,AC、BD相交于点O,AC=8,BD=6,则菱形的边长等于( )
A.10B.20C.D.5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.
10、(4分)若关于x的一元二次方程x2﹣2x+4m=0有实数根,则m的取值范围是_____.
11、(4分)计算:=________.
12、(4分)将一张A3纸对折并沿折痕裁开,得到2张A4纸.已知A3纸和A4纸是两个相似的矩形,则矩形的短边与长边的比为______.
13、(4分)如图,小军在地面上合适的位置平放了一块平面镜(平面镜的高度忽略不计),刚好在平面镜中的点处看到旗杆顶部,此时小军的站立点与点的水平距离为,旗杆底部与点的水平距离为.若小军的眼睛距离地面的高度为(即),则旗杆的高度为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,矩形ABCD中,AB=9,AD=4. E为CD边上一点,CE=6. 点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒.
(1)求AE的长;
(2)当t为何值时,△PAE为直角三角形;
(3)是否存在这样的t,使EA恰好平分∠PED,若存在,求出t的值;若不存在,请说明理由.
15、(8分)为了解某校八年级男生的体能情况,体育老师从中随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成两个不完整的统计图,请结合图中信息回答下列问题:
(1)本次抽测的男生有 人,请将条形图补充完成,本次抽测成绩的中位数是 次;
(2)若规定引体向上6次及其以上为体能达标,则该校500名八年级男生中估计有多少人体能达标?
16、(8分)如图,将矩形ABCD置于平面直角坐标系中,其中AD边在x轴上,AB=2,直线MN:y=x﹣4沿x轴的负方向以每秒1个单位的长度平移,设在平移过程中该直线被矩形ABCD的边截得的线段长度为m,平移时间为t,m与t的函数图象如图2所示.
(1)点A的坐标为 ,矩形ABCD的面积为 ;
(2)求a,b的值;
(3)在平移过程中,求直线MN扫过矩形ABCD的面积S与t的函数关系式,并写出自变量t的取值范围.
17、(10分)如图,AD是△ABC边BC上的中线,AE∥BC,BE交AD于点E,F是BE的中点,连结CE.求证:四边形ADCE是平行四边形.
18、(10分)某校有名学生,为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
根据以上信息,回答下列问题:
(1)参与本次问卷调查的学生共有_____人,其中选择类的人数有_____人;
(2)在扇形统计图中,求类对应的扇形圆心角的度数,并补全条形统计图;
(3)若将这四类上学方式视为“绿色出行”,请估计该校选择“绿色出行”的学生人数.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)成立的条件是___________________.
20、(4分)下表记录了某校4名同学游泳选拨赛成绩的平均数与方差:
根据表中数据要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择__________.
21、(4分)如图,正方形和正方形中,点在上,,,是的中点,那么的长是__________(用含、的代数式表示).
22、(4分)将圆心角为90°,面积为4π的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为_____________________.
23、(4分)已知关于的方程会产生增根,则__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平行四边形ABCD中,过AC中点O作直线,分别交AD、BC于点E、F.
求证:△AOE≌△COF.
25、(10分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.
(1)在图1中以格点为顶点画一个面积为10的正方形;
(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;
(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.
26、(12分)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点,过点F作FE⊥AD,垂足为E,将△AEF沿点A到点B的方向平移,得到△A′E′F′.
(1)求EF的长;
(2)设P,P′分别是EF,E′F′的中点,当点A′与点B重合时,求证四边形PP′CD是平行四边形,并求出四边形PP′CD的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,结合不等式组的解集即可得答案.
【详解】
解不等式(x+2)﹣3>0,得:x>4,
由不等式组的解集为x>4知m≤4,
故选A.
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键
2、B
【解析】
根据众数的概念进行解答即可.
【详解】
在数据6,5,7,5,8,6,6中,数据6出现了3次,出现次数最多,
所以这组数据的众数是6,
故选B.
本题考查了众数,明确众数是指一组数据中出现次数最多的数据是解题的关键.众数一定是这组数据中的数,可以不唯一.
3、B
【解析】
由折叠的性质可得AM=DM=AD,AD⊥MN,AD=AF,可得AF=2AM,由含30度直角三角形性质可得∠MFA=30°,即可求解.
【详解】
解:∵对折矩形纸片ABCD,使AB与DC重合,得到折痕MN,
∴AM=DM=AD,AD⊥MN,
∴MN∥AB
由折叠的性质可得:AD=AF,
∴AF=2AM
在直角三角形AFM中,有
∴∠MFA=30°
∵MN∥AB
∴∠FAB=∠MFA=30°,
故选择:B.
本题考查了翻折变换,含30度直角三角形的性质,平行线的性质,证明AF=2AM是本题的关键.
4、C
【解析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【详解】
A、调查八年级某班学生的视力情况适合全面调查,故A选项错误;
B、调查乘坐飞机的旅客是否携带违禁物品,适合全面调查,故B选项错误;
C、调查某品牌LED灯的使用寿命适合抽样调查,故C选项正确;
D、学校在给学生订制校服前尺寸大小的调查,适于全面调查,故D选项错误.
故选C.
对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
5、D
【解析】
根据图形的特点结合轴对称图形和中心对称图形的概念解答.
【详解】
解:A、既不是轴对称图形,也不是中心对称图形,故本项错误;
B、既不是轴对称图形,也不是中心对称图形,故本项错误;
C、是中心对称图形,不是轴对称图形,故本项错误;
D、是轴对称图形,故本项正确;
故选择:D.
此题考查了轴对称图形和中心对称图形的概念,熟记的定义是解题的关键.
6、D
【解析】
一次函数和反比例函数的交点坐标就是一次函数与反比例函数组成的方程组的解;根据图象可求得x>2时y1>y2;根据x=1时求出点B点C的坐标从而求出BC的值;根据图像可确定一次函数和反比例函数在第一象限的增减性.
【详解】
解:①联立一次函数与反比例函数的解析式,
解得,,
∴A(2,2),故①正确;
②由图象得x>2时,y1>y2,故②错误;
③当x=1时,B(1,4),C(1,1),∴BC=3,故③正确;
④一次函数y随x的增大而增大,反比例函数k>0,y随x的增大而减小.故④正确.
∴①③④正确.
故选D.
本题主要是考查学生对两个函数图象性质的理解.这是一道常见的一次函数与反比例函数结合的题目,需要学生充分掌握一次函数和反比例函数的图象特征.理解一次函数和反比例函数的交点坐标就是一次函数与反比例函数组成的方程组的解.
7、C
【解析】
求出不等式组的解集,即可确定出整数解.
【详解】
,
由①得:x>﹣,
由②得:x≤3,
∴不等式组的解集为﹣<x≤3,
则整数解为0,1,2,3,共4个,
故选C.
本题考查了一元一次不等式组的整数解,熟练掌握解一元一次不等式组的方法以及解集的确定方法是解题的关键.
8、D
【解析】
根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式进行计算即可得解.
【详解】
解:∵四边形ABCD是菱形,
∵AC=8,BD=6,
∴OA=4,OB=3,
即菱形ABCD的边长是1.
故选:D.
本题主要考查了菱形的对角线互相垂直平分的性质,勾股定理的应用,熟记性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(-2,-2)
【解析】
先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.
【详解】
“卒”的坐标为(﹣2,﹣2),
故答案是:(﹣2,﹣2).
考查了坐标确定位置,关键是正确确定原点位置.
10、m≤
【解析】
由关于x的一元二次方程x2﹣2x+4m=0有实数根,可知b2﹣4ac≥0,据此列不等式求解即可.
【详解】
解:由题意得,
4-4×1×4m≥0
解之得m≤
故答案为m≤.
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆
相关试卷
这是一份浙江省温州市瑞安市四校联考2024年数学九上开学学业质量监测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份浙江省温州市鹿城区温州市实验中学2025届数学九上开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届浙江省东阳中学数学九年级第一学期开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。