浙江省温州市鹿城区温州市实验中学2022年九年级数学第一学期期末质量跟踪监视试题含解析
展开
这是一份浙江省温州市鹿城区温州市实验中学2022年九年级数学第一学期期末质量跟踪监视试题含解析,共25页。试卷主要包含了如图,在中,,则的长度为,下列命题正确的是等内容,欢迎下载使用。
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.若关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是( )
A.k>1B.k<1C.k>1且k≠0D.k<1且k≠0
2.如图,公园中一正方形水池中有一喷泉,喷出的水流呈抛物线状,测得喷出口高出水面0.8m,水流在离喷出口的水平距离1.25m处达到最高,密集的水滴在水面上形成了一个半径为3m的圆,考虑到出水口过高影响美观,水滴落水形成的圆半径过大容易造成水滴外溅到池外,现决定通过降低出水口的高度,使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面( )
A.0.55米B.米C.米D.0.4米
3.二次函数y=ax2+bx+c的部分对应值如表:
利用该二次函数的图象判断,当函数值y>0时,x的取值范围是( )
A.0<x<8B.x<0或x>8C.﹣2<x<4D.x<﹣2或x>4
4.如图,一张矩形纸片ABCD的长AB=xcm,宽BC=ycm,把这张纸片沿一组对边AB和D的中点连线EF对折,对折后所得矩形AEFD与原矩形ADCB相似,则x:y的值为( )
A.2B.C.D.
5.如图,在△ABC中,D,E分别是AB,BC边上的点,且DE∥AC,若,,则△ACD的面积为( )
A.64B.72C.80D.96
6.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边落在对角线 BD上,点A落在点A' 处,折痕为DG,求AG的长为( )
A.1.5B.2C.2.5D.3
7.如图,在中,,则的长度为
A.1B.C.D.
8.若,两点均在函数的图象上,且,则与的大小关系为( )
A.B.C.D.
9.下列命题正确的是( )
A.有意义的取值范围是.
B.一组数据的方差越大,这组数据波动性越大.
C.若,则的补角为.
D.布袋中有除颜色以外完全相同的个黄球和个白球,从布袋中随机摸出一个球是白球的概率为
10.如图,圆锥的底面半径OB=6cm,高OC=8cm.则这个圆锥的侧面积是( )
A.30cm2B.30πcm2C.60πcm2D.120cm2
11.已知反比例函数 y=的图象如图所示,则二次函数 y =ax 2-2x和一次函数 y=bx+a 在同一平面直角坐标系中的图象可能是( )
A.B.C.D.
12.八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )
A.95分,95分B.95分,90分C.90分,95分D.95分,85分
二、填空题(每题4分,共24分)
13.如图,小杨沿着有一定坡度的坡面前进了5米,这个坡面的坡度为1:2,此时他与水平地面的垂直距离为____米.
14.若关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则整数a的最大值为______.
15.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______.
16.如图,某水库大坝的横断面是梯形,坝顶宽米,坝高是20米,背水坡的坡角为30°,迎水坡的坡度为1∶2,那么坝底的长度等于________米(结果保留根号)
17.如图,在Rt△ABC中∠B=50°,将△ABC绕直角顶点A顺时针旋转得到△ADE.当点C在B1C1边所在直线上时旋转角∠BAB1=____度.
18.点A(-2,y1),B(-1,y2)都在反比例函数y=- 图象上,则y1 _____________ y2 (选填 “ ﹤” , “>”或” = ”)
三、解答题(共78分)
19.(8分)矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线y=x与BC边相交于D.
(1)求点D的坐标:
(2)若抛物线y=ax+bx经过D、A两点,试确定此抛物线的表达式:
(3)P为x轴上方(2)题中的抛物线上一点,求△POA面积的最大值.
20.(8分)已知二次函数.
(1)求证:无论m取任何实数时,该函数图象与x轴总有交点;
(2)如果该函数的图象与x轴交点的横坐标均为正数,求m的最小整数值.
21.(8分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.
(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ;
(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.
22.(10分)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图1摆放,点D为AB边的中点,DE交AC于点P,DF经过点C,且BC=2.
(1)求证:△ADC∽△APD;
(2)求△APD的面积;
(3)如图2,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.
23.(10分)定义:如果一个三角形中有两个内角α,β满足α+2β=90°,那我们称这个三角形为“近直角三角形”.
(1)若△ABC是“近直角三角形”,∠B>90°,∠C=50°,则∠A= 度;
(2)如图1,在Rt△ABC中,∠BAC=90°,AB=3,AC=1.若BD是∠ABC的平分线,
①求证:△BDC是“近直角三角形”;
②在边AC上是否存在点E(异于点D),使得△BCE也是“近直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.
(3)如图2,在Rt△ABC中,∠BAC=90°,点D为AC边上一点,以BD为直径的圆交BC于点E,连结AE交BD于点F,若△BCD为“近直角三角形”,且AB=5,AF=3,求tan∠C的值.
24.(10分)如图,在直角△ABC中,∠C=90°,AB=5,作∠ABC的平分线交AC于点D,在AB上取点O,以点O为圆心经过B、D两点画圆分别与AB、BC相交于点E、F(异于点B).
(1)求证:AC是⊙O的切线;
(2)若点E恰好是AO的中点,求的长;
(3)若CF的长为,①求⊙O的半径长;②点F关于BD轴对称后得到点F′,求△BFF′与△DEF′的面积之比.
25.(12分)工艺商场按标价销售某种工艺品时,每件可获利45元;并且进价50件工艺品与销售40件工艺品的价钱相同.
(1)该工艺品每件的进价、标价分别是多少元?
(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?
26.如图,CD是⊙O的切线,点C在直径AB的延长线上.
(1)求证:∠CAD=∠BDC;
(2)若BD=AD,AC=3,求CD的长.
参考答案
一、选择题(每题4分,共48分)
1、D
【解析】根据一元二次方程的定义和△的意义得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范围.
【详解】∵关于x的一元二次方程kx2﹣2x+1=1有两个不相等的实数根,
∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,
解得k<1且k≠1.
∴k的取值范围为k<1且k≠1.
故选D.
【点睛】
本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2﹣4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.
2、B
【分析】如图,以O为原点,建立平面直角坐标系,由题意得到对称轴为x=1.25=,A(0,0.8),C(3,0),列方程组求得函数解析式,即可得到结论.
【详解】解:如图,以O为原点,建立平面直角坐标系,
由题意得,对称轴为x=1.25=,A(0,0.8),C(3,0),
设解析式为y=ax2+bx+c,
∴,
解得:,
所以解析式为:y=x2+x+,
当x=2.75时,y=,
∴使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面08﹣=,
故选:B.
【点睛】
本题考查了二次函数的实际应用,根据题意建立合适的坐标系,找到点的坐标,用待定系数法解出函数解析式是解题的关键
3、C
【分析】观察表格得出抛物线顶点坐标是(1,9),对称轴为直线x=1,而当x=-2时,y=0,则抛物线与x轴的另一交点为(1,0),由表格即可得出结论.
【详解】由表中的数据知,抛物线顶点坐标是(1,9),对称轴为直线x=1.当x<1时,y的值随x的增大而增大,当x>1时,y的值随x的增大而减小,则该抛物线开口方向向上,
所以根据抛物线的对称性质知,点(﹣2,0)关于直线直线x=1对称的点的坐标是(1,0).
所以,当函数值y>0时,x的取值范围是﹣2<x<1.
故选:C.
【点睛】
本题考查了二次函数与x轴的交点、二次函数的性质等知识,解答本题的关键是要认真观察,利用表格中的信息解决问题.
4、B
【分析】根据相似多边形对应边的比相等,可得到一个方程,解方程即可求得.
【详解】解:∵四边形ABCD是矩形,宽BC=ycm,
∴AD=BC=ycm,
由折叠的性质得:AE=AB=x,
∵矩形AEFD与原矩形ADCB相似,
∴,即,
∴x2=2y2,
∴x=y,
∴.
故选:B.
【点睛】
本题考查了相似多边形的性质、矩形的性质、翻折变换的性质;根据相似多边形对应边的比相等得出方程是解决本题的关键.
5、C
【分析】根据题意得出BE:CE=1:4,由DE∥AC得出△DBE和△ABC相似,根据相似三角形面积的比等于相似比的平方求出△ABC的面积,然后求出△ACD的面积.
【详解】∵S△BDE=4,S△CDE=16,
∴S△BDE:S△CDE=1:4,
∵△BDE和△CDE的点D到BC的距离相等,
∴,
∴,
∵DE∥AC,
∴△DBE∽△ABC,
∴S△DBE:S△ABC=1:25,
∴S△ABC=100
∴S△ACD= S△ABC - S△BDE - S△CDE =100-4-16=1.
故选C.
【点睛】
考查了相似三角形的判定与性质,等高的三角形的面积的比等于底边的比,熟记相似三角形面积的比等于相似比的平方,用△BDE的面积表示出△ABC的面积是解题的关键.
6、A
【分析】由在矩形纸片ABCD中,AB=4,AD=3,可求得BD的长,由折叠的性质,即可求得A′B的长,然后设AG=x,由勾股定理即可得:,解此方程即可求得答案.
【详解】解:∵四边形ABCD是矩形,
∴
∴
由折叠的性质,可得:A′D=AD=3,A′G=AG,
∴A′B=BD−A′D=5−3=2,
设AG=x,
则A′G=x,BG=AB−AG=4−x,
在Rt△A′BG中,由勾股定理得:
∴
解得:
∴
故选:A.
【点睛】
考查折叠的性质,矩形的性质,勾股定理等知识点,熟练掌握折叠的性质是解题的关键.
7、C
【分析】根据已知条件得到,根据相似三角形的判定和性质可得,即可得到结论.
【详解】解:∵,
∴,
∵DE∥BC,
∴△ADE∽△ABC,
,
∴,
∴BC=4.
故选:C.
【点睛】
本题考查了相似三角形的判定与性质,熟悉相似基本图形掌握相似三角形的判定与性质是解题关键.
8、A
【分析】将点A(a-1,b),B(a-2,c)代入得出方程组,根据方程组中两个方程相减可得出b-c=2a-1,结合可得到b-c的正负情况,本题得以解决.
【详解】解:∵点A(a-1,b),B(a-2,c)在二次函数的图象上,
∴,
∴b-c=2a-1,
又,∴b-c=2a-1<0,
∴b<c,
故选:A.
【点睛】
本题考查二次函数图象上的点以及不等式的性质,解答本题的关键是将已知点的坐标代入二次函数解析式,得出b-c=2a-1.
9、B
【分析】分别分析各选项的题设是否能推出结论,即可得到答案.
【详解】解:A. 有意义的取值范围是,故选项A命题错误;
B. 一组数据的方差越大,这组数据波动性越大,故选项B命题正确;
C. 若,则的补角为,故选项C命题错误;
D. 布袋中有除颜色以外完全相同的个黄球和个白球,从布袋中随机摸出一个球是白球的概率为,故选项D命题错误;
故答案为B.
【点睛】
本题考查了命题真假的判断,掌握分析各选项的题设能否退出结论的知识点是解答本题的关键.
10、C
【详解】解:由勾股定理计算出圆锥的母线长=,
圆锥漏斗的侧面积=.
故选C.
考点:圆锥的计算
11、C
【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.
【详解】∵当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;
∵反比例函数y=的图象在第一、三象限,
∴ab>0,即a、b同号,
当a<0时,抛物线y=ax2-2x的对称轴x=<0,对称轴在y轴左边,故D错误;
当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;
C正确.
故选C.
【点睛】
本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.
12、A
【详解】这组数据中95出现了3次,次数最多,为众数;中位数为第3和第4两个数的平均数为95,
故选A.
二、填空题(每题4分,共24分)
13、
【分析】设BC=x,则AB=2x,再根据勾股定理得到x2+(2x)2=52,再方程的解即可.
【详解】如图所示:设BC=x,则AB=2x,依题意得:
x2+(2x)2=52
解得x=或x=-(舍去).
故答案为:.
【点睛】
考查了解直角三角形,解决本题的关键是构造直角三角形利用勾股定理得出.
14、1
【解析】试题分析:根据一元二次方程的根的判别式,直接可求△===4-8a+8≥0,解得a≤,因此a的最大整数解为1.
故答案为1.
点睛:此题主要考查了一元二次方程根的判别式△=b2-4ac,解题关键是确定a、b、c的值,再求出判别式的结果.可根据下面的理由:
(1)当△>0时,方程有两个不相等的实数根;
(2)当△=0时,方程有两个相等的实数根;
(3)当△
相关试卷
这是一份2023-2024学年浙江省温州市鹿城区南浦实验中学九年级(下)开学数学试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年浙江省温州市鹿城区温州市实验中学九上数学期末教学质量检测试题含答案,共8页。试卷主要包含了答题时请按要求用笔,已知关于的方程个等内容,欢迎下载使用。
这是一份浙江省温州市翔升2023-2024学年九年级数学第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了下列事件中,必然发生的为,如图,在中,,则等于等内容,欢迎下载使用。