搜索
    上传资料 赚现金
    英语朗读宝

    北师大版2024-2025学年八年级数学上册专题7.5与三角形有关的角的四大类型解答专题特训(原卷版+解析)

    北师大版2024-2025学年八年级数学上册专题7.5与三角形有关的角的四大类型解答专题特训(原卷版+解析)第1页
    北师大版2024-2025学年八年级数学上册专题7.5与三角形有关的角的四大类型解答专题特训(原卷版+解析)第2页
    北师大版2024-2025学年八年级数学上册专题7.5与三角形有关的角的四大类型解答专题特训(原卷版+解析)第3页
    还剩62页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北师大版2024-2025学年八年级数学上册专题7.5与三角形有关的角的四大类型解答专题特训(原卷版+解析)

    展开

    这是一份北师大版2024-2025学年八年级数学上册专题7.5与三角形有关的角的四大类型解答专题特训(原卷版+解析),共65页。
    专题7.5 与三角形有关的角的四大类型解答【北师大版】考卷信息:本套训练卷共30题,题型针对性较高,覆盖面广,选题有深度,可加强学生对与三角形有关的角的四大类型解答的理解!【类型1 与三角形有关的角的计算】1.(2023春·甘肃兰州·八年级兰州十一中校考期末)如图,△ABC中,∠A=35°,∠B=65°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠CDF的度数.  2.(2023春·四川达州·八年级校联考期中)如图,在△ABC中,AE为BC边上的高,点D为BC边上的一点,连接AD.(1)当AD为BC边上的中线时,若AE=6,△ABC的面积为30,求CD的长;(2)当AD为∠BAC的角平分线时,若∠C=66°,∠B=36°,求∠DAE的度数.3.(2023春·安徽淮北·八年级校考期末)如图,在△ABC中,DE⊥AB于点E,DF⊥BC于点F,且DE=DF,CD平分∠ACB,∠BDC=135°.(1)求∠DBF+∠DCF的度数;(2)求∠A的度数.4.(2023春·湖北孝感·八年级统考期中)如图,点D为△ABC的边BC上一点,∠BAD=13∠BAC,BP平分∠ABC交AD于点P,∠C=70°,∠ADB=110°.求∠BPD的度数.  5.(2023春·辽宁鞍山·八年级统考期中)如图,在四边形ABCD中,AD∥BC,∠DAB的平分线交BC的延长线于点E,BG⊥AE,垂足为点F,交CD于点G.  (1)求证:BG平分∠ABE.(2)若∠DCE=105°,∠DAB=60°,求∠BGC的度数.6.(2023春·浙江温州·八年级校联考期中)已知:如图1,在三角形ABC中,∠BAC=40°,∠C=65°,将线段AC沿直线AB平移得到线段DE,连接AE.  (1)当∠E=65°时,请说明AE∥BC.(2)如图2,当DE在AC上方时,且∠E=2∠BAE−29°时,求∠BAE与∠EAC的度数.(3)在整个运动中,当AE垂直三角形ABC中的一边时,求出所有满足条件的∠E的度数.7.(2023春·吉林长春·八年级长春外国语学校校考期中)将三角形纸片ABC沿直线DE折叠,使点A落在A′处.【感知】如果点A′落在边AB上,这时图①中的∠1变为0°,那么∠A′与∠2之间的关系是 ;【探究】如果点A′落在四边形BCDE的内部(如图①),那么∠A′与∠1、∠2之间存在怎样的数量关系?并说明理由.【拓展】如果点A′落在四边形BCDE的外部(如图②),那么请直接写出∠A′与∠1、∠2之间存在数量关系 .                  8.(2023春·江西萍乡·八年级统考期末)已知点A在射线CE上,∠C=∠ADB.  (1)如图1,若AD∥BC,求证:AC∥BD;(2)如图2,若BD⊥BC,垂足为B,BD交CE于点G,请探究∠DAE与∠C的数量关系,写出你的探究结论,并说明理由;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线CE于点F,当∠BAC=∠BAD,∠DFE=8∠DAE时,求∠BAD的度数.9.(2023春·福建泉州·八年级统考期末)在△ABC中,∠C>∠B,AE平分∠BAC,点F为射线AE上一点(不与点E重合),且FD⊥BC于点D.  (1)如图1,如果点F在线段AE上,且∠C=50°,∠B=30°,则∠EFD=______.(2)如果点F在△ABC的外部,分别作出∠CAE和∠EDF的角平分线,交于点K,请在图2中补全图形,探究∠AKD、∠C、∠B三者之间的数量关系,并说明理由:(3)如图3,若点F与点A重合,PE、PC分别平分∠AEC和△ABC的外角∠ACM,连接PA,过点P作PG⊥BC交BC延长线于点G,PH⊥AB交BA的延长线于点H,若∠EAD=∠CAD,且∠CPG=710∠B+∠CPE,求∠EPH的度数.【类型2 与三角形有关的角的证明】1.(2023春·安徽宿州·八年级统考期末)如图,AB∥CD,点E在AC上,求证:∠A=∠CED+∠D.  2.(2023春·湖北武汉·八年级统考期末)如图,已知AB∥CD,∠B=60°,点G在直线EF上且∠ABG=∠FGB.  (1)求证:∠C=∠CGE.(2)若∠C=∠CGB+20°,求∠C的度数.3.(2023春·江苏南通·八年级统考期末)已知点D在∠ABC内,E为射线BC上一点,连接DE,CD.  (1)如图1所示,连接AE,若∠AED=∠BAE+∠CDE.①线段AB与CD有何位置关系?请说明理由;②过点D作DM∥AE交直线BC于点M,求证:∠CDM=∠BAE;(2)如图2所示,∠AED=∠A−∠D,若M为平面内一动点,MA∥ED,请直接写出∠MAB与∠CDE的数量关系.4.(2023春·黑龙江哈尔滨·八年级校考期中)射线OM、ON交于O点,OC平分∠MON,∠MON=60°,  (1)如图1,PA、PB分别平分∠OAB、∠OBA时,直接写出∠APB=__________;(2)如图2,PA、PB分别平分∠MAB、∠NBA时,求出∠APB的度数;(3)在(2)条件下,如图2中,求证∠PAB+∠OPB=90°.5.(2023春·河南南阳·八年级统考期末)请阅读下列材料,并完成相应任务.在数学探究课上,老师出了这样一个题:如图1,锐角∠BAC内部有一点D,在其两边AB和AC上各取任意一点E,F,连接DE,DF.求证:∠BED+∠DFC=∠BAC+∠EDF.任务:(1)小丽证明过程中的“依据”是指数学定理:________________________;(2)下列说法正确的是____________.A.小丽的证法用严谨的推理证明了该定理B.小丽的证法还需要改变∠BAC的大小,再进行证明,该定理的证明才完整C.小红的证法用特殊到一般的方法证明了该定理D.小红的证法只要将点D在∠BAC的内部任意移动100次,重新测量进行验证,就能证明该定理(3)如图,若点D在锐角∠BAC外部,ED与AC相交于点G,其余条件不变,原题中结论还成立吗?若成立,请说明理由;若不成立,请探索∠BED,∠DFC,∠BAC,∠EDF之间的关系.6.(2023春·北京大兴·八年级统考期末)如图,在直角三角形ABC中,∠ACB=90°.  (1)如图1,点M在线段CB上,在线段BC的延长线上取一点N,使得∠NAC=∠MAC.过点B作BD⊥AM,交AM延长线于点D,过点N作NE∥BD,交AB于点E,交AM于点F.判断∠ENB与∠NAC之间的数量关系,写出你的结论,并加以证明;(2)如图2,点M在线段CB的延长线上,在线段BC的延长线上取一点N,使得∠NAC=∠MAC.过点B作BD⊥AM于点D,过点N作NE∥BD,交BA延长线于点E,交MA延长线于点F.①依题意补全图形;②若∠CAB=45°,求证:∠NEA=∠NAE.7.(2023春·江苏扬州·八年级校考期末)【探究结论】(1)如图1,AB∥CD,E为形内一点,连结AE、CE得到∠AEC,则∠AEC、∠A、∠C的关系是______(直接写出结论,不需要证明):【探究应用】利用(1)中结论解决下面问题:(2)如图2,AB∥CD,直线MN分别交AB、CD于点E、F,EG1和EG2为∠BEF内满足∠1=∠2的两条线,分别与∠EFD的平分线交于点G1和G2,求证:∠FG1E+∠G2=180°.(3)如图3,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=3∠CEF,若8°

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map