年终活动
搜索
    上传资料 赚现金

    吉林省长春市净月高新区2025届九上数学开学监测模拟试题【含答案】

    吉林省长春市净月高新区2025届九上数学开学监测模拟试题【含答案】第1页
    吉林省长春市净月高新区2025届九上数学开学监测模拟试题【含答案】第2页
    吉林省长春市净月高新区2025届九上数学开学监测模拟试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    吉林省长春市净月高新区2025届九上数学开学监测模拟试题【含答案】

    展开

    这是一份吉林省长春市净月高新区2025届九上数学开学监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若关于x的分式方程的解为非负数,则a的取值范围是( )
    A.a≥1B.a>1C.a≥1且a≠4D.a>1且a≠4
    2、(4分)下列图形中,既是轴对称图形,又是中心对称图形的是( )
    A.线段B.直角三角形C.等边三角形D.平行四边形
    3、(4分)矩形ABCD中AB=10,BC=8,E为AD边上一点,沿CE将△CDE对折,点D正好落在AB边上的F点.则AE的长是( )
    A.3
    B.4
    C.5
    D.6
    4、(4分)菱形具有平行四边形不一定具有的特征是( )
    A.对角线互相垂直B.对角相等C.对角线互相平分D.对边相等
    5、(4分)关于的方程有实数根,则整数的最大值是( )
    A.6B.7C.8D.9
    6、(4分)如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为( )
    A.45°B.15°C.10°D.125°
    7、(4分)下列4个命题:
    ①对角线相等且互相平分的四边形是正方形;
    ②有三个角是直角的四边形是矩形;
    ③对角线互相垂直的平行四边形是菱形;
    ④一组对边平行,另一组对边相等的四边形是平行四边形
    其中正确的是( )
    A.②③B.②C.①②④D.③④
    8、(4分)抛物线()的部分图象如图所示,与轴的一个交点坐标为,抛物线的对称轴是,下列结论是:①;②;③方程有两个不相等的实数根;④;⑤若点在该抛物线上,则,其中正确的个数有( )
    A.1个B.2个C.3个D.4个
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)下表是某校女子羽毛球队队员的年龄分布:
    则该校女子排球队队员年龄的中位数为__________岁.
    10、(4分)已知函数关系式:,则自变量x的取值范围是 ▲ .
    11、(4分)化简:=__________.
    12、(4分)如图,正方形ABCD中,,点E、F分别在边AD和边BC上,且,动点P、Q分别从A、C两点同时出发,点P自A→F→B方向运动,点Q自C→D→E→C方向运动若点P、Q的运动速度分别为1cm/s,3cm/s,设运动时间为,当A 、C、P、Q四点为顶点的四边形是平行四边形时则t= ________________
    13、(4分)如图,P是矩形ABCD内一点,,,,则当线段DP最短时, ________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)利用幂的运算性质计算:
    15、(8分)在平面直角坐标系xOy中,点P和图形W的“中点形”的定义如下:对于图形W上的任意一点Q,连结PQ,取PQ的中点,由所以这些中点所组成的图形,叫做点P和图形W的“中点形”.
    已知C(-2,2),D(1,2),E(1,0),F(-2,0).
    (1)若点O和线段CD的“中点形”为图形G,则在点,,中,在图形G上的点是 ;
    (2)已知点A(2,0),请通过画图说明点A和四边形CDEF的“中点形”是否为四边形?若是,写出四边形各顶点的坐标,若不是,说明理由;
    (3)点B为直线y=2x上一点,记点B和四边形CDEF的中点形为图形M,若图形M与四边形CDEF有公共点,直接写出点B的横坐标b的取值范围.
    16、(8分)计算化简
    (1)
    (2)
    17、(10分)如图,等腰直角三角形 AEF 的顶点 E 在等腰直角三角形 ABC 的边 BC上.AB 的延长线交 EF 于 D 点,其中∠AEF=∠ABC=90°.
    (1)求证:
    (2)若 E 为 BC 的中点,求的值.
    18、(10分)河南某校招聘干部一名 ,对、、三人进行素质测试,他们各项成绩如下表:将语言、综合知识、创新和处理问题能力按测试成绩、、、比例计算,谁将被录用?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是__________.
    20、(4分)如图所示,平行四边形中,点在边上,以为折痕,将向上翻折,点正好落在上的处,若的周长为8,的周长为22,则的长为__________.
    21、(4分)使式子的值为0,则a的值为_______.
    22、(4分)反比例函数y=图象上有两个点(x1,y1),(x2,y2),其中0<x1<x2,则y1,y2的大小关系是_____(用“<“连接).
    23、(4分)统计学校排球队队员的年龄,发现有岁、岁、岁、岁等四种年龄,统计结果如下表,则根据表中信息可以判断表中信息可以判断该排球队队员的平均年龄是__________岁.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,▱ABCD中,,,垂足分别是E,求证:.
    25、(10分)解不等式(组),并将其解集分别表示在数轴上
    (1)10﹣4(x﹣3)≤2(x﹣1);
    (2).
    26、(12分)解方程
    (1)
    (2)
    (3)
    (4) (公式法)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    试题分析:分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为1求出a的范围即可.
    解:去分母得:2(2x﹣a)=x﹣2,
    解得:x=,
    由题意得:≥1且≠2,
    解得:a≥1且a≠4,
    故选C.
    点睛:此题考查了分式方程的解,需注意在任何时候都要考虑分母不为1.
    2、A
    【解析】
    根据中心对称图形的定义逐项识别即可,在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,旋转前后图形上能够重合的点叫做对称点.
    【详解】
    A. 既是轴对称图形,又是中心对称图形,符合题意;
    B. 既不是轴对称图形,也不是中心对称图形,不符合题意;
    C.是轴对称图形,不是中心对称图形,不符合题意;
    D.不是轴对称图形是中心对称图形,不符合题意;
    故选A.
    本题考查了中心对称图形的识别,熟练掌握中心对称图形的定义是解答本题的关键.
    3、A
    【解析】
    由矩形的性质和折叠的性质可得CF=DC=10,DE=EF,由勾股定理可求BF的长,即可得AF=4,在Rt△AEF中,由勾股定理即可求得AE的长.
    【详解】
    ∵四边形ABCD是矩形,
    ∴AB=CD=10,BC=AD=8,∠A=∠D=∠B=90°,
    ∵折叠,
    ∴CD=CF=10,EF=DE,
    在Rt△BCF中,BF==6,
    ∴AF=AB-BF=10-6=4,
    在Rt△AEF中,AE2+AF2=EF2,
    ∴AE2+16=(8-AE)2,
    ∴AE=3,
    故选A.
    本题考查了翻折变换,矩形的性质,勾股定理,熟练掌握折叠的性质是本题的关键.
    4、A
    【解析】
    根据平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分;菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等; ③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角进行解答即可.
    【详解】
    菱形具有但平行四边形不一定具有的是对角线互相垂直,
    故选A.
    本题主要考查了菱形和平行四边形的性质,关键是熟练掌握二者的性质定理.
    5、C
    【解析】
    方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a-6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.
    【详解】
    当a-6=0,即a=6时,方程是-1x+6=0,解得x=;
    当a-6≠0,即a≠6时,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得≈1.6,
    取最大整数,即a=1.
    故选C.
    6、A
    【解析】
    由等边三角形的性质可得,进而可得,又因为,结合等腰三角形的性质,易得的大小,进而可求出的度数.
    【详解】
    是等边三角形,
    ,,
    四边形是正方形,
    ,,
    ,,

    .
    故选:.
    本题考查了正方形的性质,等边三角形的性质,三角形的内角和定理,等腰三角形的性质和判定的应用,解此题的关键是求出的度数,难度适中.
    7、A
    【解析】
    根据正方形的判定,矩形的判定、菱形的判定和平行四边形的判定判断即可
    【详解】
    ①对角线相等且互相垂直平分的四边形是正方形,少“垂直”,故错;
    ②四边形的三个角是直角,由内角和为360°知,第四个角必是直角,正确;
    ③平行四边形对角线互相平分,加上对角线互相垂直,是菱形,故正确;
    ④有可能是等腰梯形,故错,
    正确的是②③
    此题考查正方形的判定,矩形的判定、菱形的判定和平行四边形的判定,解题关键在于掌握判定定理
    8、D
    【解析】
    根据二次函数的对称性补全图像,再根据二次函数的性质即可求解.
    【详解】
    如图,∵与轴的一个交点坐标为,抛物线的对称轴是,
    实验求出二次函数与x轴的另一个交点为(-2,0)
    故可补全图像如下,
    由图可知a<0,c>0,对称轴x=1,故b>0,
    ∴,①错误,
    ②对称轴x=1,故x=-,∴,正确;
    ③如图,作y=2图像,与函数有两个交点,∴方程有两个不相等的实数根,正确;④∵x=-2时,y=0,即,正确;⑤∵抛物线的对称轴为x=1,故点在该抛物线上,则,正确;
    故选D
    此题主要考查二次函数的图像,解题的关键是熟知二次函数的对称性.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、15.
    【解析】
    中位数有2种情况,共有2n+1个数据时,从小到大排列后,,中位数应为第n+1个数据,可见,大于中位数与小于中位数的数据都为n个;共有2n+2个数据时,从小到大排列后,中位数为中间两个数据平均值,大小介于这两个数据之间,可见大于中位数与小于中位数的数据都为n+1个,所以这组数据中大于或小于这个中位数的数据各占一半,中位数有一个.
    【详解】
    解:总数据有5个,中位数是从小到大排,第3个数据为中位数,即15为这组数据的中位数.
    故答案为:15
    本题考查中位数的定义,解题关键是熟练掌握中位数的计算方法,即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).
    10、
    【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须。
    11、2x
    【解析】
    根据分式的除法法则进行计算即可.
    【详解】
    故答案为:.
    本题考查了分式除法运算,掌握分式的除法法则是解题的关键.
    12、3s或6s
    【解析】
    根据两点速度和运动路径可知,点Q在EC上、点P在AF上或和点P在BC上时、点Q在AD上时,A、C、P、Q四点为顶点的四边形是平行四边形.根据平行四边形性质构造方程即可.
    【详解】
    由P、Q速度和运动方向可知,当Q运动EC上,P在AF上运动时,
    若EQ=FP,A、C、P、Q四点为顶点的四边形是平行四边形
    ∴3t-7=5-t
    ∴t=3
    当P、Q分别在BC、AD上时
    若QD=BP,形A、C、P、Q四点为顶点的四边形是平行四边形
    此时Q点已经完成第一周
    ∴4-[3(t-4)-4]=t-5+1
    ∴t=6
    故答案为:3s或6s.
    本题考查了正方形的性质,平行四边形的判定和性质,动点问题的分类讨论和三角形全等有关知识.解答时注意分析两个动点的相对位置关系.
    13、
    【解析】
    因为AP⊥BP,则P点在AB为直径的半圆上,当P点为AB的中点E与D点连线与半圆AB的交点时,DP最短,求出此时PC的长度便可.
    【详解】
    解:以AB为直径作半圆O,连接OD,与半圆O交于点P′,当点P与P′重合时,DP最短,
    则AO=OP′=OB=AB=2,
    ∵AD=2,∠BAD=90°,
    ∴OD=2,∠ADC=∠AOD=∠ODC=45°,
    ∴DP′=OD-OP′=2-2,
    过P′作P′E⊥CD于点E,则
    P′E=DE=DP′=2-,
    ∴CE=CD-DE=+2,
    ∴CP′==.
    故答案为.
    本题是一个矩形的综合题,主要考查了矩形的性质,勾股定理,圆的性质,关键是作辅助圆和构造直角三角形.
    三、解答题(本大题共5个小题,共48分)
    14、4
    【解析】
    运用幂的运算法则进行运算即可
    【详解】
    本题考查幂的运算,熟练掌握幂的运算规则是集体关键
    15、(1),;(1)点A和四边形CDEF的“中点形”是四边形,各顶点的坐标为:(0,0)、(0,1)、(,0)、(,1);(3)-1≤b≤0或 1≤b≤1.
    【解析】
    (1)依照题意画出图形,观察图形可知点O和线段CD的中间点所组成的图形是线段C′D′,根据点A,C,D的坐标,利用中点坐标公式可求出点C′,D′的坐标,进而可得出结论;
    (1)画出图形,观察图形可得出结论;
    (3)利用一次函数图象上点的坐标特征可得出点B的坐标为(n,1n),依照题意画出图形,观察图形可知:点B和四边形CDEF的中间点只能在边EF和DE上,当点B和四边形CDEF的中间点在边EF上时,利用四边形CDEF的纵坐标的范围,可得出关于n的一元一次不等式组,解之即可得出n的取值范围;当点B和四边形CDEF的中间点在边DE上时,由四边形CDEF的横、纵坐标的范围,可得出关于n的一元一次不等式组,解之即可得出n的取值范围.综上,此题得解.
    【详解】
    解:(1)如图:点O和线段CD的中间点所组成的图形G是线段C′D′,
    由题意可知:点C′为线段OC的中点,点D′为线段OD的中点.
    ∵点C的坐标为(-1,1),点D的坐标为(1,1),
    ∴点C′的坐标为(-1,1),点D′的坐标为( ,1),
    ∴点O和线段CD的中间点所组成的图形G即线段C′D′的纵坐标是1,横坐标-1≤x≤,
    ∴点,,中,在图形G上的点是,;

    (1)点A和四边形CDEF的“中点形”是四边形.
    各顶点的坐标为:(0,0)、(0,1)、(,0)、(,1).
    (3)∵点B的横坐标为b,
    ∴点B的坐标为(b,1b).
    当点B和四边形CDEF的中间点在边EF上时,有 ,
    解得:-1≤b≤0;
    当点B和四边形CDEF的中间点在边DE上时,有 ,
    解得:1≤b≤1,
    综上所述:点B的横坐标b的取值范围为-1≤b≤0 或 1≤b≤1.
    故答案为(1),;(1)点A和四边形CDEF的“中点形”是四边形,各顶点的坐标为:(0,0)、(0,1)、(,0)、(,1);(3)-1≤b≤0或 1≤b≤1.
    本题考查中点坐标公式、一次函数图象上点的坐标特征以及解一元一次不等式组,解题的关键是:(1)通过画图找出点O和线段CD的中间点所组成的图形是线段C′D′;(1)画出图形,观察图形;(3)分点B和四边形CDEF的中间点在边EF上及点B和四边形CDEF的中间点在边DE上两种情况,找出关于b的一元一次不等式组.
    16、(1)(2)
    【解析】
    (1)原式第一项利用零指数公式化简,第二项利用负指数公式化简,最后一项利用绝对值的代数意义化简,计算即可得到结果;
    (2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果.
    【详解】
    解:(1)原式=1+3-(-2)=6-;
    (2)原式==
    本题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.
    17、(1)见解析;(2)
    【解析】
    (1)由△AEF、△ABC是等腰直角三角形,易证得△FAD∽△CAE,然后由相似三角形的对应边成比例,可得 ,又由等腰直角三角形的性质,可得AF= AE,即可证得;
    (2)首先设BE=a,由射影定理,可求得DB的长,继而可求得DA的长,即可求得答案.
    【详解】
    (1)证明:∵△AEF、△ABC是等腰直角三角形,
    ∴∠EAF=∠BAC=45°,∠F=∠C=45°,
    ∴∠FAD=∠CAE,
    ∴△FAD∽△CAE,
    ∴,
    ∵∠AEF=90°,AE=EF,
    ∴AF=AE,
    ∴;
    (2)设BE=a,
    ∵E为BC的中点,
    ∴EC=BE=a,AB=BC=2a,
    ∵∠AEF=∠ABC=90°,
    ∴BE =AB⋅DB,
    ∴DB= ,
    ∵DA=DB+AB,
    ∴DA= ,
    ∴= .
    此题考查相似三角形的判定与性质,等腰直角三角形,解题关键在于证明△FAD∽△CAE
    18、将被录用.
    【解析】
    按各项所占百分数求出A、B、C三人的测试成绩,再进行比较即可.
    【详解】
    的测试成绩为
    的测试成绩为
    的测试成绩为
    因为,所以将被录用.
    本题主要考查了加权平均数的计算,解题关键是正确理解题目含义.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    试题分析:首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.
    试题解析:∵CE∥BD,DE∥AC,
    ∴四边形CODE是平行四边形,
    ∵四边形ABCD是矩形,
    ∴AC=BD=4,OA=OC,OB=OD,
    ∴OD=OC=AC=2,
    ∴四边形CODE是菱形,
    ∴四边形CODE的周长为:4OC=4×2=1.
    考点: 1.菱形的判定与性质;2.矩形的性质.
    20、1.
    【解析】
    依据△FDE的周长为8,△FCB的周长为22,即可得出DF+AD=8,FC+CB+AB=22,进而得到平行四边形ABCD的周长=8+22=30,可得AB+BC=BF+BC=15,再根据△FCB的周长=FC+CB+BF=22,即可得到CF=22-15=1.
    【详解】
    解:由折叠可得,EF=AE,BF=AB.
    ∵△FDE的周长为8,△FCB的周长为22,
    ∴DF+AD=8,FC+CB+AB=22,
    ∴平行四边形ABCD的周长=8+22=30,
    ∴AB+BC=BF+BC=15,
    又∵△FCB的周长=FC+CB+BF=22,
    ∴CF=22-15=1,
    故答案为:1.
    本题考查了平行四边形的性质及图形的翻折问题,折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.
    21、
    【解析】
    根据分式值为0,分子为0,分母不为0解答即可.
    【详解】
    ∵的值为0,
    ∴2a-1=0,a+2≠0,
    ∴a=.
    故答案为:
    本题考查分式为0的条件,要使分式值为0,则分子为0,分母不为0;熟练掌握分式为0的条件是解题关键.
    22、.
    【解析】
    根据反比例函数的k确定图象在哪两个象限,再根据(x1,y1),(x2,y2),其中,确定这两个点均在第一象限,根据在第一象限内y随x的增大而减小的性质做出判断.
    【详解】
    解:反比例函数y=图象在一、三象限,
    (x1,y1),(x2,y2)在反比例函数y=图象上,且,
    因此(x1,y1),(x2,y2)在第一象限,
    ∵反比例函数y=在第一象限y随x的增大而减小,
    ∴,
    故答案为:.
    本题考查了反比例函数的增减性,熟悉反比例函数的图象与性质是解题的关键.
    23、
    【解析】
    计算出学校排球队队员的总年龄再除以总人数即可.
    【详解】
    解:(岁)
    所以该排球队队员的平均年龄是14岁.
    故答案为:14
    本题考查了平均数,掌握求平均数的方法是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、证明见解析.
    【解析】
    根据平行四边形性质可得,,结合已知利用AAS易证,可得.
    【详解】
    证明:四边形ABCD是平行四边形,
    ,,

    在和中,

    ≌,

    本题考核知识点:平行四边形性质.解题关键点:熟记平行四边形性质.
    25、(1)x≥1,解集在数轴上如图所示见解析;(2)﹣1≤x<3,解集在数轴上如图所示见解析.
    【解析】
    (1)去括号,移项,合并同类项,化系数为1即可;
    (2)先求出其中各不等式的解集,再求出这些解集的公共部分即可.
    【详解】
    (1)10﹣1(x﹣3)≤2(x﹣1)
    10﹣1x+12≤2x﹣2,
    ﹣6x≤﹣21,
    x≥1.
    解集在数轴上如图所示:
    (2)
    由①得到:x≥﹣1,
    由②得到:x<3,
    ∴﹣1≤x<3,
    本题考查不等式组的解法,数轴等知识,解题的关键是熟练掌握不等式组的解法,属于中考常考题型.
    26、 (1) x=-(2)x=1 (3)x1=6,x2=0(4) x1=2,x2=-
    【解析】
    (1)根据分式方程的解法去分母化为整式方程,故可求解;
    (2)根据分式方程的解法去分母化为整式方程,故可求解;
    (3)根据直接开平方法即可求解
    (4)先化为一般式,再利用公式法即可求解.
    【详解】
    (1)
    x=-
    经检验,x=-是原方程的解;
    (2)
    x-5=8x-12
    -7x=-7
    x=1
    经检验,x=1是原方程的解;
    (3)
    x-3=±3
    x-3=3,x-3=-3
    x1=6,x2=0;
    (4)
    这里a=2,b=-1,c=-6
    ∴△=b2-4ac=1+4×2×6=49>0
    ∴x==
    ∴x1=2,x2=-.
    此题主要考查分式方程与一元二次方程的求解,解题的关键是熟知其解法.
    题号





    总分
    得分
    批阅人
    年龄/岁
    13
    14
    15
    16
    人数
    1
    1
    2
    1
    测试项目
    测试成绩
    语言
    综合知识
    创新
    处理问题能力
    年龄/岁
    人数/个

    相关试卷

    吉林省长春市高新区2024年九上数学开学调研试题【含答案】:

    这是一份吉林省长春市高新区2024年九上数学开学调研试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    吉林省长春市净月高新区华岳学校2024-2025学年九年级上学期开学考试数学试题:

    这是一份吉林省长春市净月高新区华岳学校2024-2025学年九年级上学期开学考试数学试题,共6页。

    吉林省长春市净月高新区2023-2024学年九上数学期末达标测试试题含答案:

    这是一份吉林省长春市净月高新区2023-2024学年九上数学期末达标测试试题含答案,共9页。试卷主要包含了设A,如图4,,已知等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map