黑龙江省大庆市名校2025届数学九年级第一学期开学复习检测模拟试题【含答案】
展开这是一份黑龙江省大庆市名校2025届数学九年级第一学期开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各曲线中表示y是x的函数的是( )
A.B.C.D.
2、(4分)如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为( )
A.6B.5C.4D.3
3、(4分)小明在家中利用物理知识称量某个品牌纯牛奶的净含量,称得六盒纯牛奶的含量分别为:248mL,250mL,249mL,251mL,249mL,253mL,对于这组数据,下列说法正确的是( ).
A.平均数为251mLB.中位数为249mL
C.众数为250mLD.方差为
4、(4分)下列各式中,是最简二次根式的是( )
A.B.C.D.
5、(4分)在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB的长为( )
A.3B.4C.5D.6
6、(4分)下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.等边三角形B.等腰直角三角形
C.平行四边形D.菱形
7、(4分)如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=20,CE=15,CF=7,AF=24,则BE的长为( )
A.10B.C.15D.
8、(4分)某排球队名场上队员的身高(单位:)是:,,,,,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高( )
A.平均数变小,方差变小B.平均数变小,方差变大
C.平均数变大,方差变小D.平均数变大,方差变大
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在2017年的理化生实验考试中某校6名学生的实验成绩统计如图,这组数据的众数是___分.
10、(4分)如图,正方形ABCD的对角线AC、BD相交于点O,DE平分∠ODA交OA于点E,若AB=2+,则线段OE的长为_____.
11、(4分)如图,在△ABC中,AB=AC=5,BC=8,点D是边BC上(不与B,C重合)一动点,∠ADE=∠B=a,DE交AC于点E,下列结论:①AD2=AE.AB;②1.8≤AE<5;⑤当AD=时,△ABD≌△DCE;④△DCE为直角三角形,BD为4或6.1.其中正确的结论是_____.(把你认为正确结论序号都填上)
12、(4分)如图,在平行四边形ABCD中,∠ABC的平分线BF交AD于点F,FE∥AB.若AB=5,BF=6,则四边形ABEF的面积为________
13、(4分)在开展“全民阅读”活动中,某校为了解全校1500名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1500名学生一周的课外阅读时间不少于7小时的人数是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)王华同学要证明命题“对角线相等的平行四边形是矩形”是正确的,她先作出了如图所示的平行四边形ABCD,并写出了如下不完整的已知和求证.
已知:如图1,在平行四边形ABCD中, ,求证:平行四边形ABCD是 .
(1)在方框中填空,以补全已知和求证;
(2)按王晓的想法写出证明过程;
证明:
15、(8分)已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).
(1)四边形EFGH的形状是 ,证明你的结论;
(2)当四边形ABCD的对角线满足 条件时,四边形EFGH是矩形;
(3)你学过的哪种特殊四边形的中点四边形是矩形? .(不证明)
16、(8分)端午节假期,某商场开展促销活动,活动规定:若购买不超过100元的商品,则按全额交费;若购买超过100元的商品,则超过100元的部分按8折交费.设商品全额为x元,交费为y元.
(1)写出y与x之间的函数关系式.
(2)某顾客在-一次消费中,向售货员交纳了300元,那么在这次消费中,该顾客购买的商品全额为多少元?
17、(10分)如图,点在上,,,,,求的长.
18、(10分)先化简,再求值:,其中x=﹣2+.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知函数y=(m﹣1)x|m|+3是一次函数,则m=_____.
20、(4分)如图,反比例函数与正比例函数和的图像分别交于点A(2,2)和B(b,3),则关于x的不等式组的解集为___________。
21、(4分)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为 .
22、(4分)如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是__.
23、(4分)如图,在菱形中,,,以为边作菱形,且;再以为边作菱形,且;.……;按此规律,菱形的面积为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1,在中,,,点,分别在边AC,BC上,,连接BD,点F,P,G分别为AB,BD,DE的中点.
(1)如图1中,线段PF与PG的数量关系是 ,位置关系是 ;
(2)若把△ CDE绕点C逆时针方向旋转到图2的位置,连接AD,BE,GF,判断△ FGP的形状,并说明理由;
(3)若把△ CDE绕点C在平面内自由旋转,AC=8,CD=3,请求出△FGP面积的最大值.
25、(10分)如图,是矩形的边延长线上的一点,连接,交于,把沿向左平移,使点与点重合,吗?请说明理由.
26、(12分)已知一次函数y=kx+b的图象与直线y=﹣2x+1的交点M的横坐标为1,与直线y=x﹣1的交点N的纵坐标为2,求这个一次函数的解析式.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.
故选D.
2、D
【解析】
试题分析:已知,在△ABC中,∠ACB=90°,AC=8,AB=10,根据勾股定理可得BC=6,又因DE垂直平分AC,∠ACB=90°,可得DE为△ABC的中位线,根据三角形的中位线定理可得DE=BC=3,故答案选D.
考点:勾股定理;三角形的中位线定理.
3、D
【解析】
试题分析:中位数是一组数据按大小顺序排列,中间一个数或两个数的平均数,即为中位数;出现次数最多的数即为众数;方差就是各变量值与其均值离差平方的平均数,根据方差公式计算即可,所以计算方差前要先算出平均数,然后再利用方差公式计算.A、这组数据平均数为:(248+250+249+251+249+253)÷6=250,故此选项错误;B、数据重新排列为:248,249,249,250,251,253,其中位数是(249+250)÷2=249.5,故此选项错误;C、这组数据出现次数最多的是249,则众数为249,故此选项错误;D、这组数据的平均数250,根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],则其方差为:×[(248﹣250)2+(250﹣250)2+(249﹣250)2+(251﹣250)2+(249﹣250)2+(253﹣250)2]=,故此选项正确;故选D.
考点:平均数、中位数、众数、方差的定义.
4、B
【解析】
根据最简二次根式的定义即可求解.
【详解】
A. ,分母出现根号,故不是最简二次根式;
B. 为最简二次根式;
C. =2,故不是最简二次根式;
D. ,根号内含有小数,故不是最简二次根式,
故选B.
此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.
5、C
【解析】
∠C=90°,AC=3,BC=4,,
所以AB=5.故选C.
6、D
【解析】
按照轴对称图形和中心对称图形的定义逐项判断即可.
【详解】
解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;
B、等腰直角三角形是轴对称图形,不是中心对称图形,故本选项错误;
C、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;
D、菱形是轴对称图形,也是中心对称图形,故本选项正确.
故选:D.
本题考查了轴对称图形和中心对称图形的定义,属于基础题型,熟知轴对称图形和中心对称图形的定义是解题的关键.
7、C
【解析】
分析:根据平行四边形的面积,可得设 则在Rt中,用勾股定理即可解得.
详解:∵四边形ABCD是平行四边形,
∴
∴
设 则
在Rt中,
即
解得(舍去),
故选C.
点睛:考查了平行四边形的面积,平行四边形的性质,勾股定理等,难度较大,根据面积得出是解题的关键.
8、A
【解析】
分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.
详解:换人前6名队员身高的平均数为==188,
方差为S2==;
换人后6名队员身高的平均数为==187,
方差为S2==
∵188>187,>,
∴平均数变小,方差变小,
故选:A.
点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据图象写出这组数据,再根据一组数据中出现次数最多的数据叫做众数求解.
【详解】
解:由图可得,
这组数据分别是:24,24,1,1,1,30,
∵1出现的次数最多,
∴这组数据的众数是1.
故答案为:1.
本题考查折线统计图和众数,解答本题的关键是明确众数的定义,利用数形结合的思想解答.
10、1.
【解析】
分析题目需要添加辅助线,先过E作EF⊥AD于F,设OE=x,则EH=AH=x,AE=x,AO=x+x,在Rt△ABO中,根据勾股定理列方程求解即可.
【详解】
如图,过E作EF⊥AD于F,则△AEH是等腰直角三角形,
∵DE平分∠ODA,EO⊥DO,EH⊥DH,
∴OE=HE,
设OE=x,则EH=AH=x,AE=x,AO=x+x,
在Rt△ABO中,
AO2+BO2=AB2,
∴(x+x)2+(x+x)2=(2+)2,
解得x=1(负值已舍去),
∴线段OE的长为1.
故答案为:1.
此题考查正方形的性质,解决问题的关键是作辅助线构造直角三角形,运用勾股定理列方程进行计算;
11、①②④.
【解析】
①易证△ABD∽△ADF,结论正确;
②由①结论可得:AE=,再确定AD的范围为:3≤AD<5,即可证明结论正确;
③分两种情况:当BD<4时,可证明结论正确,当BD>4时,结论不成立;故③错误;
④△DCE为直角三角形,可分两种情况:∠CDE=90°或∠CED=90°,分别讨论即可.
【详解】
解:如图,在线段DE上取点F,使AF=AE,连接AF,
则∠AFE=∠AEF,
∵AB=AC,
∴∠B=∠C,
∵∠ADE=∠B=a,
∴∠C=∠ADE=a,
∵∠AFE=∠DAF+∠ADE,∠AEF=∠C+∠CDE,
∴∠DAF=∠CDE,
∵∠ADE+∠CDE=∠B+∠BAD,
∴∠CDE=∠BAD,
∴∠DAF=∠BAD,
∴△ABD∽△ADF
∴,即AD2=AB•AF
∴AD2=AB•AE,
故①正确;
由①可知:,
当AD⊥BC时,由勾股定理可得:
,
∴,
∴,即,故②正确;
如图2,作AH⊥BC于H,
∵AB=AC=5,
∴BH=CH=BC=4,
∴,
∵AD=AD′=,
∴DH=D′H=,
∴BD=3或BD′=5,CD=5或CD′=3,
∵∠B=∠C
∴△ABD≌△DCE(SAS),△ABD′与△D′CE不是全等形
故③不正确;
如图3,AD⊥BC,DE⊥AC,
∴∠ADE+∠DAE=∠C+∠DAE=90°,
∴∠ADE=∠C=∠B,
∴BD=4;
如图4,DE⊥BC于D,AH⊥BC于H,
∵∠ADE=∠C,
∴∠ADH=∠CAH,
∴△ADH∽△CAH,
∴,即,
∴DH=,
∴BD=BH+DH=4+==6.1,
故④正确;
综上所述,正确的结论为:①②④;
故答案为:①②④.
本题属于填空题压轴题,考查了直角三角形性质,勾股定理,全等三角形判定和性质,相似三角形判定和性质,动点问题和分类讨论思想等;解题时要对所有结论逐一进行分析判断,特别要注意分类讨论.
12、24
【解析】
首先证明四边形ABEF是菱形,由勾股定理求出OA,得出AE的长,即可解决问题.
【详解】
连接AE,
∵四边形ABCD为平行四边形
∴AD∥BC,AD=BC
∵BF为∠ABE的平分线,∴∠FBE=∠AFB,∴四边形ABEF为平行四边形
∵AB=AF,
∴根据勾股定理,即可得到AE=2=8.
∴四边形ABEF的面积=×AE×BF=24.
本题考查了菱形的性质和判定,平行四边形的性质和判定,勾股定理,等腰三角形的性质,平行线的性质等知识;证明四边形ABEF是菱形是解决问题的关键.
13、1
【解析】
用所有学生数乘以课外阅读时间不少于7小时的人数所占的百分比即可.
【详解】
解:该校1500名学生一周的课外阅读时间不少于7小时的人数是1500×=1人,
故答案为1.
点评:本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于7小时的人数所占的百分比.
三、解答题(本大题共5个小题,共48分)
14、(1)AC=BD,矩形;(2)证明详见解析.
【解析】
(1)根据对角线相等的平行四边形是矩形,可得答案;
(2)根据全等三角形的判定与性质,可得∠ADC与∠BCD的关系,根据平行四边形的邻角互补,可得∠ADC的度数,根据矩形的判定,可得答案.
【详解】
(1)解:在平行四边形ABCD中,AC=BD,求证:平行四边形ABCD是 矩形;
(2)证明:∵四边形ABCD是平行四边形,
∴AD∥CB,AD=BC.
在△ADC和△BCD中,∵AC=BD,AD=BC,CD=DC,
∴△ADC≌△BCD.∴∠ADC=∠BCD.
又∵AD∥CB,
∴∠ADC+∠BCD=180°.
∴∠ADC=∠BCD=90°.
∴平行四边形ABCD是矩形.
本题考查了矩形的判定,利用全等三角形的判定与性质得出∠ADC=∠BCD是解题关键.
15、(1)平行四边形;(2)互相垂直;(3)菱形.
【解析】
分析:(1)、连接BD,根据三角形中位线的性质得出EH∥FG,EH=FG,从而得出平行四边形;(2)、首先根据三角形中位线的性质得出平行四边形,根据对角线垂直得出一个角为直角,从而得出矩形;(3)、根据菱形的性质和三角形中位线的性质得出平行四边形,然后根据对角线垂直得出矩形.
详解:(1)证明:连结BD.
∵E、H分别是AB、AD中点, ∴EH∥BD,EH=BD,
同理FG∥BD,FG=BD, ∴EH∥FG,EH=FG, ∴四边形EFGH是平行四边形
(2)当四边形ABCD的对角线满足互相垂直的条件时,四边形EFGH是矩形.
理由如下:如图,连结AC、BD.
∵E、F、G、H分别为四边形ABCD四条边上的中点, ∴EH∥BD,HG∥AC,
∵AC⊥BD, ∴EH⊥HG, 又∵四边形EFGH是平行四边形, ∴平行四边形EFGH是矩形;
(3)菱形的中点四边形是矩形.理由如下:如图,连结AC、BD.
∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,FG∥BD,EH=BD,FG=BD, ∴EH∥FG,EH=FG,
∴四边形EFGH是平行四边形.∵四边形ABCD是菱形, ∴AC⊥BD,∵EH∥BD,HG∥AC,
∴EH⊥HG, ∴平行四边形EFGH是矩形.
点睛:本题主要考查的就是三角形中位线的性质以及特殊平行四边形的判定,属于中等难度题型.三角形的中位线平行且等于第三边的一半.解决这个问题的关键就是要明确特殊平行四边形的判定定理.
16、(1);(2)该顾客购买的商品全额为350元.
【解析】
(1)根据题意分段函数,即当自变量x≤100和x>100两种情况分别探索关系式,
(2)根据金额,判断符合哪个函数,代入求解即可.
【详解】
(1)
(2)由题意得,
解得.
答:该顾客购买的商品全额为350元.
考查根据实际问题求一次函数的关系式、分段函数关系式的探索,以及代入求值等知识,体会函数的意义.
17、.
【解析】
首先证明,得到,设,于是得到,.在中,利用勾股定理可得结果.
【详解】
解:∵
∴∴∠ACE+∠BCF=∠CAE+∠ACE=90°,
∴∠CAE=∠FBC,
∴.
设.
∴.
∴,.
在中,可得.
解得,,(舍)
所以的长为.
本题考查相似三角形的判定与性质、勾股定理.利用三角形相似求出相似比是解决问题的关键.
18、,
【解析】
原式括号中两项通分并利用同分母分式的加减法则计算,再把除法转化成乘法约分即可得到结果.
【详解】
解:原式=÷
=÷
=×
=
=﹣,
当x=﹣2+时,
原式=﹣=﹣=﹣.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、﹣1
【解析】
因为y=(m﹣1)x|m|+3是一次函数,所以|m|=1,m﹣1≠0,解答即可.
【详解】
解:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
则得到|m|=1,m=±1,
∵m﹣1≠0,
∴m≠1,m=﹣1.
故答案是:m=﹣1.
考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.k≠0是考查的重点.
20、
【解析】
把点A(2,2)代入得k=4得到。可求B()由函数图像可知的解集是:
【详解】
解:把点A(2,2)代入得:
∴k=4
∴
当y=3时
∴
∴B()
由函数图像可知的解集是:
本题考查了反比例函数和一次函数的交点问题,掌握求反比例函数解析式,及点的坐标,以及由函数求出不等式的解集.
21、55°或35°.
【解析】
试题分析:①若E在AD上,如图,∵BE是AD边上的高,∠EBD=20°,∴∠ADB=90°﹣20°=70°,∵AD=BD,∴∠DAB=∠ABD=55°;
②若E在AD的延长线上,如图,∵BE是AD边上的高,∠EBD=20°,∴∠EDB=90°﹣20°=70°,∵AD=BD,∴∠DAB=∠ABD=35°.故答案为55°或35°.
考点:1.平行四边形的性质;2.分类讨论.
22、.
【解析】
解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;
故答案为.
本题考查概率的计算及等腰三角形的判定,熟记等要三角形的性质及判定方法和概率的计算公式是本题的解题关键.
23、或.
【解析】
根据题意求出每个菱形的边长以及面积,从中找出规律.
【详解】
解:当菱形的边长为a,其中一个内角为120°时,
其菱形面积为:a2,
当AB=1,易求得AC=,此时菱形ABCD的面积为:=×1,
当AC=时,易求得AC1=3,此时菱形面积ACC1D1的面积为:=×()2,
当AC1=3时,易求得AC2=3,此时菱形面积AC1C2D2的面积为: =×()4,
……,
由此规律可知:菱形AC2018C2019D2019的面积为×()2×2019=.,
故答案为:或.
本题考查规律型,解题的关键是正确找出菱形面积之间的规律,本题属于中等题型.
二、解答题(本大题共3个小题,共30分)
24、1)PF=PG PF⊥PG;(2)△FGP是等腰直角三角形,理由见解析;(3)S△PGF最大=.
【解析】
(1)根据等腰三角形的性质和三角形的中位线定理解答即可;
(2)由旋转知,∠ACD=∠BCE,进一步证明△CAD≌△CBE,再利用全等三角形的判定和性质以及三角形中位线定理解答;
(3)由(2)知,△FGP是等腰直角三角形,PG=PF=AD,PG最大时,△FGP面积最大,进而解答即可.
【详解】
解(1)PF=PG PF⊥PG;
如图1,∵在△ABC中,AB=BC,点,分别在边AC,BC上,且CD=CE,
∴AC-CD=BC-CE,即AD=BE,点F、P、G分别为DE、DC、BC的中点,
∴PF=AB,PG=CE,
∴PF=PG,
∵点F、P、G分别为DE、DC、BC的中点,
∴PG//BE,PF//AD,
∴∠PFB=∠A,∠DPG=∠DBC,
∴∠FPG=∠DPF+∠DPG
=∠PFB+∠DBA+∠DPG
=∠A+∠DBA+∠DBC
=∠A+∠ABC,
∵∠ABC+∠ACB=180°-∠C
∴∠FPG=180°-90°=90°,PF⊥PG;
(2)△FGP是等腰直角三角形
理由:由旋转知,∠ACD=∠BCE,
∵AC=BC,CD=CE,
∴△CAD≌△CBE(SAS),
∴∠CAD=∠CBE,AD=BE,
利用三角形的中位线得,PG=BE,PF=AD,
∴PG=PF,
∴△FGP是等腰三角形,
利用三角形的中位线得,PG∥CE,
∴∠DPG=∠DBE,
利用三角形的中位线得,PF∥AD,
∴∠PFB=∠DAB,
∵∠DPF=∠DBA+∠PNB=∠DBA+∠DAB,
∴∠GPF=∠DPG+∠DPF=∠DBE+∠DBA+∠DAB
=∠ABE+∠DAB=∠CBA+∠CBE+∠DAB
=∠CBA+∠CAD+∠DAB=∠CBA+∠CAB,
∵∠ACB=90°,
∴∠CBA+∠CAB=90°,
∴∠GPF=90°,
∴△FGP是等腰直角三角形;
(3)由(2)知,△FGP是等腰直角三角形,PG=PF=AD,
∴PG最大时,△FGP面积最大,
∴点D在AC的延长线上,
∴AD=AC+CD=11,
∴PG=,
∴S△PGF最大=PG2=
此题属于几何变换综合题,关键是根据三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质进行解答.
25、见解析
【解析】
根据平移的性质得到∠GCB=∠DAF,然后利用ASA证得两三角形全等即可.
【详解】
解:△ADF≌△CBG;
理由:∵把△ABE沿CB向左平移,使点E与点C重合,
∴∠GCB=∠E,
∵四边形ABCD是矩形,
∴∠E=∠DAF,
∴∠GCB=∠DAF,
在△ADF与△CBG中,
,
∴△ADF≌△CBG(ASA).
本题考查了矩形的性质及全等三角形的判定等知识,解题的关键是了解矩形的性质与平移的性质,难度不大.
26、y=x﹣.
【解析】
依据条件求得交点M的坐标是(1,﹣1),交点N的坐标是(3,2),再根据待定系数法即可得到一次函数的解析式.
【详解】
解:把x=1代入y=﹣2x+1中,可得y=﹣1,
故交点M的坐标是(1,﹣1);
把y=2代入y=x﹣1中,得x=3,
故交点N的坐标是(3,2),
设这个一次函数的解析式是y=kx+b,
把(1,﹣1),(3,2)代入,可得,
解得,
故所求函数的解析式是y=x﹣.
本题考查了两直线相交的问题,解题的关键是理解交点是两条直线的公共点.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份黑龙江省大庆市肇源2025届九上数学开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份黑龙江省大庆市三站中学2025届数学九年级第一学期开学检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份大庆市重点中学2024年数学九年级第一学期开学复习检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。