2024-2025学年黑龙江省大庆市九年级数学第一学期开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如果a < b ,则下列式子错误的是( )
A.a +7< b +7B.a ﹣5< b ﹣5
C.﹣3 a <﹣3 bD.
2、(4分)下列交通标志图案是轴对称图形的是( )
A.B.C.D.
3、(4分)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )
A.甲B.乙C.丙D.丁
4、(4分)下列从左边到右边的变形,是因式分解的是
A.B.
C.D.
5、(4分)关于的方程有实数解,那么的取值范围是()
A.B.C.D.且
6、(4分)小明用作图象的方法解二元一次方程组时,他作出了相应的两个一次函数的图象,则他解的这个方程组是( )
A.B.C.D.
7、(4分)一次函数y=ax+b和y=bx+a的图象可能是( )
A.B.C.D.
8、(4分)如图,在中,,点、分别是、的中点,点是的中点,若,则的长度为( )
A.4B.3C.2.5D.5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,直线 y=x+1 与 y 轴交于点 A1,以 OA1为边,在 y 轴右侧作正方形 OA1B1C1,延长 C1B1交直线 y=x+1 于点 A2,再以 C1A2为边作正方形,…,这些正方形与直线 y=x+1 的交点分别为 A1,A2,A3,…,An,则点 Bn 的坐标为_______.
10、(4分)若是整数,则最小的正整数a的值是_________.
11、(4分)某商店销售型和型两种电脑,其中型电脑每台的利润为400元,型电脑每台的利润为500元,该商店计划一次性购进两种型号的电脑共100台,设购进型电脑台,这100台电脑的销售总利润为元,则关于的函数解析式是____________.
12、(4分)若分式方程有增根,则 a 的值是__________________.
13、(4分)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:如图,在□ABCD中,点E在AB上,点F在CD上,且DE∥BF.求证:DE = BF.
15、(8分)中央电视台举办的“中国诗词大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国诗词大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A类(非常喜欢),B类(较喜欢)C类(一般),D类(不喜欢).请结合两幅统计图,回答下列问题:
(1)求本次抽样调查的人数;
(2)请补全两幅统计图;
(3)若该校有3000名学生,请你估计观看“中国诗词大会”节目较喜欢的学生人数.
16、(8分)一个多边形的内角和比它的外角和的2倍还大180度,求这个多边形的边数.
17、(10分)已知是等边三角形,D是BC边上的一个动点点D不与B,C重合是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.
如图1,求证:≌;
请判断图1中四边形BCEF的形状,并说明理由;
若D点在BC边的延长线上,如图2,其它条件不变,请问中结论还成立吗?如果成立,请说明理由.
18、(10分)某发电厂共有6台发电机发电,每台的发电量为300万千瓦/月.该厂计划从今年7月开始到年底,对6台发电机各进行一次改造升级.每月改造升级1台,这台发电机当月停机,并于次月再投入发电,每台发电机改造升级后,每月的发电量将比原来提高20%.已知每台发电机改造升级的费用为20万元.将今年7月份作为第1个月开始往后算,该厂第x(x是正整数)个月的发电量设为y(万千瓦).
(1)求该厂第2个月的发电量及今年下半年的总发电量;
(2)求y关于x的函数关系式;
(3)如果每发1千瓦电可以盈利0.04元,那么从第1个月开始,至少要到第几个月,这期间该厂的发电盈利扣除发电机改造升级费用后的盈利总额ω1(万元),将超过同样时间内发电机不作改造升级时的发电盈利总额ω2(万元)?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图将△ABC沿BC平移得△DCE,连AD,R是DE上的一点,且DR:RE=1:2,BR分别与AC,CD相交于点P,Q,则BP:PQ:QR=__.
20、(4分)如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=16,则D到AB边的距离是 .
21、(4分)一个不透明的袋中装有3个红球,2个黄球,1个白球,每个球除颜色外都相同,从袋中任意摸出一球,则摸到__________球的可能性最大。(填“红色”、“黄色”或“白色”)
22、(4分)如图,在等腰梯形 ABCD 中,AD∥BC,AB=CD.点 P 为底边 BC 的延长线上任意一点,PE⊥AB 于 E,PF⊥DC 于 F,BM⊥DC 于 M.请你探究线段 PE、PF、BM 之间的数量关系:
______.
23、(4分)一个弹簧不挂重物时长10cm,挂上重物后伸长的长度与所挂重物的质量成正比,如果挂上1kg的物体后,弹簧伸长3cm,则弹簧总长y(单位:cm)关于所挂重物x(单位:kg)的函数关系式为_____(不需要写出自变量取值范围)
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,E,F分别是OA和OC的中点.
(1)求证:DE=BF.
(2)求证:四边形BFDE是平行四边形.
25、(10分)小明在数学活动课上,将边长为和3的两个正方形放置在直线l上,如图a,他连接AD、CF,经测量发现AD=CF.
(1)他将正方形ODEF绕O点逆时针针旋转一定的角度,如图b,试判断AD与CF还相等吗?说明理由.
(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图c,请求出CF的长.
26、(12分)小黄人在与同伴们研究日历时发现了一个有趣的规律:
若用字母n表示平行四边形中左上角位置的数字,请你用含n的式子写出小黄人发现的规律,并加以证明.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据不等式的性质,逐项判断即可.
【详解】
解:∵a<b,∴a+7<b+7,故选项A不符合题意;
∵a<b,∴a-5<b-5,故选项B不符合题意;
∵a<b,∴-3a>-3b,故选项C符合题意;
∵a<b,∴,故选项D不符合题意.
故选:C.
此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.
2、C
【解析】
根据轴对称图形的概念对各选项分析判断后利用排除法求解.
【详解】
A. 不是轴对称图形,故本选项错误;
B.不是轴对称图形,故本选项错误;
C.是轴对称图形,故本选项正确;
D.不是轴对称图形,故本选项错误;
故选C.
此题考查轴对称图形,解题关键在于识别图形
3、D
【解析】
【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.
【详解】∵,
∴从乙和丁中选择一人参加比赛,
∵,
∴选择丁参赛,
故选D.
【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.
4、B
【解析】
根据因式分解的定义:将多项式和的形式转化为整式乘积的形式;因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法;因式分解的要求:分解要彻底,小括号外不能含整式加减形式.
【详解】
A选项,利用提公因式法可得: ,因此A选项错误,
B选项,根据立方差公式进行因式分解可得:,因此B选项正确,
C选项,不属于因式分解,
D选项,利用提公因式法可得:,因此D选项错误,
故选B.
本题主要考查因式分解,解决本题的关键是要熟练掌握因式分解的定义和方法.
5、B
【解析】
由于x的方程(m-2)x2-2x+1=0有实数解,则根据其判别式即可得到关于m的不等式,解不等式即可求出m的取值范围.但此题要分m=2和m≠2两种情况.
【详解】
(1)当m=2时,原方程变为-2x+1=0,此方程一定有解;
(2)当m≠2时,原方程是一元二次方程,
∵有实数解,
∴△=4-4(m-2)≥0,
∴m≤1.
所以m的取值范围是m≤1.
故选:B.
此题考查根的判别式,解题关键在于分两种情况进行讨论,错误的认为原方程只是一元二次方程.
6、D
【解析】
根据直线所在的象限,确定k,b的符号.
【详解】
由图象可知,两条直线的一次项系数都是负数,且一条直线与y轴的交点在y轴的正半轴上,b为正数,另一条直线的与y轴的交点在y轴的负半轴上,b为负数,符合条件的方程组只有D.
故选D.
一次函数y=kx+b的图象所在象限与常数k,b的关系是:①当k>0,b>0时,函数y=kx+b的图象经过第一,二,三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一,三,四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一,二,四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二,三,四象限,反之也成立.
7、D
【解析】
对于各选项,先确定一条直线的位置得到a和b的符号,然后根据此符号判断另一条直线的位置是否符号要求即可.
【详解】
A、若经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,所以直线y=bx+a经过第一、二、三象限,所以A选项错误;
B、若经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,所以直线y=bx+a经过第一、二、三象限,所以B选项错误;
C、若经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,所以直线y=bx+a经过第一、二、四象限,所以C选项错误;
D、若经过第一、二、四象限的直线为y=ax+b,则a<0,b>0,所以直线y=bx+a经过第一、三、四象限,所以D选项正确,
故选D.
本题考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
8、C
【解析】
利用直角三角形斜边中线定理以及三角形的中位线定理即可解决问题.
【详解】
解:在Rt△ABC中,
∵,点是的中点,
∴AD=BD= CD=AB=1,
∵BF=DF,BE=EC,
∴EF=CD=2.1.
故选:C.
本题考查三角形的中位线定理、直角三角形斜边上的中线的性质等知识,解题的关键是熟练掌握三角形的中位线定理以及直角三角形斜边上的中线的性质解决问题,属于中考常考题型.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、 (2n-1,2(n-1)).
【解析】
首先求出B1,B2,B3的坐标,根据坐标找出规律即可解题.
【详解】
解:由直线y=x+1,知A1(0,1),即OA1=A1B1=1,
∴B1的坐标为(1,1)或[21-1,2(1-1)];
那么A2的坐标为:(1,2),即A2C1=2,
∴B2的坐标为:(1+2,2),即(3,2)或[22-1,2(2-1)];
那么A3的坐标为:(3,4),即A3C2=4,
∴B3的坐标为:(1+2+4,4),即(7,4)或[23-1,2(3-1)];
依此类推,点Bn的坐标应该为(2n-1,2(n-1)).
本题属于规律探究题,中等难度.求出点B坐标,找出规律是解题关键.
10、1.
【解析】
由于41a=1×3×3×a,要使其为整数,则必能被开得尽方,所以满足条件的最小正整数a为1.
【详解】
解: 41a=1×3×3×a,
若为整数,则必能被开方,所以满足条件的最小正整数a为1.
故答案为:1.
本题考查二次根式的化简.
11、
【解析】
根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式.
【详解】
解:根据题意,
y=400x+500(100-x)=-100x+50000;
故答案为
本题主要考查了一次函数的应用,解题的关键是根据总利润与销售数量的数量关系列出关系式.
12、1
【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣3=0,得到x=3,然后代入整式方程算出a的值即可.
【详解】
方程两边同时乘以x﹣3得:1+x﹣3=a﹣x.
∵方程有增根,∴x﹣3=0,解得:x=3,∴1+3﹣3=a﹣3,解得:a=1.
故答案为:1.
本题考查了分式方程的增根,先根据增根的定义得出x的值是解答此题的关键.
13、n2+2n
【解析】
试题分析:第1个图形是2×3﹣3,第2个图形是3×4﹣4,第3个图形是4×5﹣5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2)=n2+2n.
解:第n个图形需要黑色棋子的个数是n2+2n.
故答案为:n2+2n.
三、解答题(本大题共5个小题,共48分)
14、证明见解析.
【解析】
只要证明四边形DEBF是平行四边形即可解决问题.
【详解】
证明:∵四边形ABCD是平行四边形,
∴DC∥AB,即DF∥BE,
又∵DE∥BF,
∴四边形DEBF是平行四边形,
∴DE=BF.
本题考查平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判定和性质.
15、(1)100(人);(2)详见解析;(3)1050人.
【解析】
(1)用A类的人数除以它所占的百分比,即可得本次抽样调查的人数;
(2)分别计算出D类的人数为:100﹣20﹣35﹣100×19%=26(人),D类所占的百分比为:26÷100×100%=26%,B类所占的百分比为:35÷100×100%=35%,即可补全统计图;
(3)用3000乘以样本中观看“中国诗词大会”节目较喜欢的学生人数所占的百分比,即可解答.
【详解】
解:(1)本次抽样调查的人数为:20÷20%=100(人);
(2)D类的人数为:100﹣20﹣35﹣100×19%=26(人),
D类所占的百分比为:26÷100×100%=26%,
B类所占的百分比为:35÷100×100%=35%,
如图所示:
(3)3000×35%=1050(人).
观看“中国诗词大会”节目较喜欢的学生人数为1050人.
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.
16、这个多边形的边数是1.
【解析】
试题分析:设这个多边形的边数为n,根据多边形的内角和公式(n﹣2)•180°与外角和定理列出方程,求解即可.
试题解析:设这个多边形的边数为n,
根据题意,得(n﹣2)×180°=2×360°+180°,
解得n=1.
故这个多边形的边数是1.
17、 (1)见解析;(2) 四边形BCEF是平行四边形,理由见解析;(3) 成立,理由见解析.
【解析】
(1)利用有两条边对应相等并且夹角相等的两个三角形全等即可证明△AFB≌△ADC;
(2)四边形BCEF是平行四边形,因为△AFB≌△ADC,所以可得∠ABF=∠C=60°,进而证明∠ABF=∠BAC,则可得到FB∥AC,又BC∥EF,所以四边形BCEF是平行四边形;
(3)易证AF=AD,AB=AC,∠FAD=∠BAC=60°,可得∠FAB=∠DAC,即可证明△AFB≌△ADC;根据△AFB≌△ADC可得∠ABF=∠ADC,进而求得∠AFB=∠EAF,求得BF∥AE,又BC∥EF,从而证得四边形BCEF是平行四边形.
【详解】
和都是等边三角形,
,,,
又,,
,
在和中,
,
≌;
由得≌,
,
又,
,
,
又,
四边形BCEF是平行四边形;
成立,理由如下:
和都是等边三角形,
,,,
又,,
,
在和中,
,
≌;
,
又,,
,
,
,
又,
四边形BCEF是平行四边形.
本题考查了等边三角形的性质,全等三角形的判定与性质,平行四边形的判定等,熟练掌握相关的性质与定理是解题的关键.
18、(1)该厂第4个月的发电量为1540万千瓦;今年下半年的总发电量为1万千瓦;(4)4140.(3)3个月
【解析】
试题分析:(1)由题意可以知道第1个月的发电量是300×5千瓦,第4个月的发电量为300×4+300(1+40%),第3个月的发电量为300×3+300×4×(1+40%),第4个月的发电量为300×4+300×3×(1+40%),第5个月的发电量为300×1+300×4×(1+40%),第4个月的发电量为300×5×(1+40%),将4个月的总电量加起来就可以求出总电量.
(4)由总发电量=各台机器的发电量之和根据(1)的结论设y与x之间的关系式为y=kx+b建立方程组求出其解即可.
(3)由总利润=发电盈利﹣发电机改造升级费用,分别表示出ω1,ω4,再根据条件建立不等式求出
其解即可.
试题解析:解:(1)由题意,得
第4个月的发电量为:300×4+300(1+40%)=1540千瓦,
今年下半年的总发电量为:
300×5+1540+300×3+300×4×(1+40%)+300×4+300×3×(1+40%)+300×1+300×4×(1+40%)+300×5×(1+40%)
=1500+1540+1440+1480+340+1800=1.
答:该厂第4个月的发电量为1540千瓦;今年下半年的总发电量为1千瓦.
(4)设y与x之间的关系式为y=kx+b,由题意,得
,解得:.
∴y关于x的函数关系式为y=40x+1440(1≤x≤4).
(3)设到第n个月时ω1>ω4,
当n=4时,ω1=1×0.04﹣40×4=474,ω4=300×4×4×0.04=434,ω1>ω4不符合.
∴n>4.
∴ω1=[1+340×4(n﹣4)]×0.04﹣40×4=84.4n﹣440,ω4=300×4n×0.04=74n.
当ω1>ω4时,84.4n﹣440>74n,解之得n>14.7,∴n=3.
答:至少要到第3个月ω1超过ω4.
考点:1.一次函数和不等式的应用;4.由实际问题列函数关系式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2:1:1
【解析】
根据平移的性质得到AC∥DE,BC=CE,得到△BPC∽△BRE,根据相似三角形的性质得到PC=DR,根据△PQC∽△RQD,得到PQ=QR,即可求解.
【详解】
由平移的性质可知,AC∥DE,BC=CE,
∴△BPC∽△BRE,
∴,
∴PC=RE,BP=PR,
∵DR:RE=1:2,
∴PC=DR,
∵AC∥DE,
∴△PQC∽△RQD,
∴=1,
∴PQ=QR,
∴BP:PQ:QR=2:1:1,
故答案为2:1:1.
本题考查了相似三角形的判定和性质,平移的性质,掌握相似三角形的判定定理和性质定理是解题的关键.
20、1.
【解析】
作DE⊥AB,根据角平分线性质可得:DE=CD=1.
【详解】
如图,作DE⊥AB,
因为∠C=90°,AD是∠BAC的平分线,CD=1,
所以,DE=CD=1.即:D到AB边的距离是1.
故答案为1
本题考核知识点:角平分线性质. 解题关键点:利用角平分线性质求线段长度.
21、红色
【解析】
可根据概率公式计算出红球、黄球、白球摸到的概率,然后比较即可
【详解】
解:总共有3+2+1=6个球,摸到红球的概率为: ,摸到黄球的概率为:,摸到白球的概率为:,所以红色球的可能性最大.
本题考查可能性的大小,可根据随机等可能事件的概率计算公式分别计算出它们的概率,然后比较即可,也可以列举出所有可能的结果,比较即可.
22、PE-PF=BM.
【解析】
过点B作BH∥CD,交PF的延长线于点H,易证四边形BMFH是平行四边形,于是有FH=BM,再用AAS证明△PBE≌△PBH,可得PH=PE,继而得到结论.
【详解】
解:PE-PF=BM. 理由如下:
过点B作BH∥CD,交PF的延长线于点H,如图
∴∠PBH=∠DCB,
∵PF⊥CD,BM⊥CD,
∴BM∥FH,PH⊥BH,
∴四边形BMFH是平行四边形,∠H=90°,
∴FH=BM,
∵等腰梯形ABCD中,AD∥BC,AB=DC,
∴∠ABC=∠DCB,
∴∠ABC=∠PBH,
∵PE⊥AB,
∴∠PEB=∠H=90°,又PB为公共边,
∴△PBE≌△PBH(AAS),
∴PH=PE,
∴PE=PF+FH=PF+BM.
即PE-PF=BM.
本题考查了等腰梯形的性质、平行四边形的判定与性质和全等三角形的判定与性质,解题的关键是正确添加辅助线,构造所需的平行四边形和全等三角形.
23、y=3x+1
【解析】
根据题意可知,弹簧总长度y(cm)与所挂物体质量x(kg)之间符合一次函数关系,可设y=kx+1.代入求解.
【详解】
弹簧总长y(单位:cm)关于所挂重物x(单位:kg)的函数关系式为y=3x+1,
故答案为y=3x+1
此题考查根据实际问题列一次函数关系式,解题关键在于列出方程
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析.
【解析】
(1)根据平行四边形的判定和性质即可得到结论;
(2)根据平行四边形的判定和性质即可得到结论.
【详解】
(1)∵四边形ABCD是平行四边形,
∴BO=OD,AO=OC,
又∵E,F分别为AO,OC的中点,
∴EO=OF,
∴四边形BFDE是平行四边形,
∴DE=BF;
(2)∵四边形ABCD是平行四边形,
∴BO=OD,AO=OC,
又∵E,F分别为AO,OC的中点,
∴EO=OF,
∴四边形BFDE是平行四边形.
本题考查了平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判定和性质,属于中考常考题型.
25、(2)详见解析(2)CF=
【解析】
(2)根据正方形的性质可得AO=CO,OD=OF,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF,再利用“边角边”证明△AOD和△COF全等,根据全等三角形对应边相等即可得证.
(2)与(2)同理求出CF=AD,连接DF交OE于G,根据正方形的对角线互相垂直平分可得DF⊥OE,DG=OGOE,再求出AG,然后利用勾股定理列式计算即可求出AD.
【详解】
解:(2)AD=CF.理由如下:
在正方形ABCO和正方形ODEF中,∵AO=CO,OD=OF,∠AOC=∠DOF=90°,
∴∠AOC+∠COD=∠DOF+∠COD,即∠AOD=∠COF.
在△AOD和△COF中,∵AO=CO,∠AOD=∠COF,OD=OF,
∴△AOD≌△COF(SAS).
∴AD=CF.
(2)与(2)同理求出CF=AD,
如图,连接DF交OE于G,则DF⊥OE,DG=OG=OE,
∵正方形ODEF的边长为,∴OE=×=2.
∴DG=OG=OE=×2=2.
∴AG=AO+OG=3+2=4,
在Rt△ADG中,,
∴CF=AD=.
26、,证明见解析
【解析】
设左上角的数字为x,则右上角的数字为x+1;左下角的数字为x+6;右下角的数字为x+7,根据题意将四个数交叉相乘进行整式乘法的运算并化简即可.
【详解】
解:规律为
证明:∵
=
=6
∴
本题考查整式的乘法运算,根据题意找到数字间的等量关系及多项式的乘法法则,正确计算是本题的解题关键.
题号
一
二
三
四
五
总分
得分
甲
乙
丙
丁
平均数(环)
9.14
9.15
9.14
9.15
方差
6.6
6.8
6.7
6.6
2024-2025学年黑龙江省哈尔滨市数学九年级第一学期开学检测模拟试题【含答案】: 这是一份2024-2025学年黑龙江省哈尔滨市数学九年级第一学期开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年黑龙江省哈尔滨市南岗区萧红中学九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年黑龙江省哈尔滨市南岗区萧红中学九年级数学第一学期开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年黑龙江省八五八农场学校数学九年级第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年黑龙江省八五八农场学校数学九年级第一学期开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。