人教版(2024新版)七年级上册数学期中模拟测试卷(含答案)
展开这是一份人教版(2024新版)七年级上册数学期中模拟测试卷(含答案),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(共10题,每题3分,共30分.在每题给出的四个选项中,只有一项符合题目要求)
1.−2 024 的绝对值是( )
A. −2 024 B. 2 024 C. 12 024 D. −12 024
2.若a=4,b=−2,则代数式a−ab 的值为( )
A. 14 B. 24 C. 20 D. 12
3.代数式表示的意义是( )
A. a与b的和 B. a与b 的倒数和
C. a与b的倒数的和 D. a与b 的和的倒数
4.下列各对数中,互为相反数的是( )
A. −(+3)与+(−3) B. −(−4)与|−4| C. −32与(−3)2 D. −23与(−2)2
5.元旦是公历新一年的第一天.“元旦”一词最早出现于《晋书》:“颛帝以孟夏正月为元,其实正朔元旦之春.”中国古代曾以腊月、十月等的月首为元旦,1949年中华人民共和国以公历1月1日为元旦,因此元旦在中国也被称为“阳历年”.为庆祝元旦,郑州某商场举行促销活动,促销的方法是“消费超过200元时,所购买的商品按原价打八折后,再减少20元”.若某商品的原价为x(x>200) 元,则购买该商品实际付款( )
A. (80%x−20)元 B. 80%(x−20) 元 C. (20%x−20)元 D. 20%(x−20) 元
6.下列计算正确的是( )
A. −5−2=−3 B. −2÷13×3=−2 C. −423=−163 D. 322=92
某商店2023年四个季度的商品销售盈亏情况如下表所示(盈余为正):
则该商店2023年的盈亏情况是( )
A. 盈余644万元B. 亏本173万元C. 盈余173万元D. 亏本644万元
8.下列代数式中,不能表示图中阴影部分面积的是( )
A. 3(x+2)+x2B. x2+5x C. (x+3)(x+2)−2x D. x(x+3)+6
9.已知|m|=4,|n|=6,且m+n=|m+n|,则m−n= ( )
A. −10B. −2C. 2 D. −2或−10
10.有若干片相同的拼图,其形状如图1所示(单位:cm ),凸出的部分是直径为4 cm 的半圆,且拼图沿水平方向排列时可紧密拼成一行,此时底部可与直线贴齐.当4片拼图紧密拼成一行时长度为38 cm ,如图2所示.下列结论正确的是( )
A. 依题意,有4(a+b)=38
B. 1片拼图的长度为9.5 cm
C. 将拼图紧密拼成一行时,每增加一片拼图,总长度增加11 cm
D. 将n 片拼图紧密拼成一行时,总长度为(9n+2)cm
二、填空题(共5题,每题3分,共15分)
11.若超出标准质量0.05 g记作+0.05 g,则低于标准质量0.03 g 记作_________.
12.中国是世界上最早使用负数的国家.请写出一个比−4.5 大的负整数:__________________.
13.2024年“五一”假期首日,游客出游热情高涨.据湖北省文旅厅数据显示,湖北省a级旅游景区共接待游客249.8万人次.将数据249.8万用科学记数法表示为_____________.
14.已知,数轴上a,b,c三点表示的有理数分别为a,b,c ,其中点a在点b左侧,a,b两点间的距离为4,且a,b,c 满足|a+b|+(c−2 024)2=0 ,则
(1)c 的值为_______.
(2)数轴上任意一点P表示的数为x,若存在x 使|x−a|+|x−b|+|x−c|的值最小,则x 的值为___.
15.一种新运算,规定有以下两种变换:
①f(m,n)=(m,−n),如f(3,2)=(3,−2) .
②g(m,n)=(−m,−n),如g(3,2)=(−3,−2) .按照以上变换,如果f[g(3,4)]=f(−3,−4)=(−3,4) ,那么g[f(5,−6)]= _________.
三、解答题(共9题,共75分,解答应写出文字说明、证明过程或验算步骤)
16.(6分)把下列各数填在相应的集合内:
−5,+1/3,0.62,4,0,−1.1,−(−7/6),−6.4,−7,−71/3,|−7| .
正整数集合:{_______…}.
负有理数集合:{___________________________…}.
非负数集合:{_______________________________…}.
17.(6分)计算:
(1)−14−−6+2−3×−13 .
(2)29−14+118÷−136 .
18.(6分)若长方形的长、宽分别为x,y ,面积保持不变,下表给出了x与y 的一些值:
(1)请根据表格信息用式子表示y与x的关系,并判断y与x 成什么比例关系.
(2)根据y与x 的关系式完成上表.
19.(8分)计算不规则图形的面积时,有时采用“方格法”,具体计算方法如下:假定每个小方格的边长为1,S为图形的面积,L是边界上的格点数,n 是内部格点数,则有S=+n−1 .请根据此方法计算图中四边形ABCD 的面积.
20.(8分)如图,这是黄冈市18路公交的部分站点示意图.某天,小王参加公交志愿者服务活动,从十字街站出发,最后在a站结束服务活动.如果规定向东方京城方向为正,小王当天的乘车站数按先后顺序依次记录如下(单位:站):+5,−3,+4,−5,−2,+1,−3,+4 ,+1 .
(1)请通过计算说明a 站是哪一站.(写站名)
(2)若相邻两站之间的平均距离约为0.8千米,求这次小王志愿服务期间乘公交行进的总路程约是多少千米.
21.(8分)某游泳馆的普通票价为20元/张,暑假期间该游泳馆新推出两种优惠卡:
金卡:售价为600元/张,每次游泳凭卡不再收费.
银卡:售价为150元/张,每次游泳凭卡另收10元.
已知小王同学暑假期间到该游泳馆游泳x 次.
(1)求小王选择办理两种卡分别需要的费用.
(2)若x=50 ,则小王选择哪种优惠卡更合算?
22.(10分)又到一年白菜丰收时,白菜种植基地某蔬菜种植大户装了10袋白菜准备销售,称得质量如下(单位:千克).
199,198,198.5,201,199.5,202,197,200.5,203,201.5 .
(1)每袋白菜超过200千克的记为正数,不足200千克的记为负数.请用正、负数表示这10袋白菜的质量,并计算这10袋白菜的总质量.
(2)若这种白菜的批发价为每千克0.3元,今年该镇白菜种植500公顷,每公顷的平均产量估计为100 000千克,则该镇当季白菜产值可以达到多少万元?
23.(11分)如图所示,在长和宽分别是a,b 的长方形纸片的四个角都剪去一个边长为x 的正方形,折叠后做成一个无盖的盒子(单位:cm ).
(1)用含a,b,x 的代数式表示纸片剩余部分的面积.
(2)用含a,b,x 的代数式表示盒子的体积.
(3)当a=10,b=8 且剪去的每一个小正方形的面积等于4 cm2 时,求剪去的每个小正方形的边长及所做成的盒子的体积.
24.(12分)观察下列等式:
第1个等式:a1=11×3=12×1−13 ;
第2个等式:a2=13×5=12×13−15 ;
第3个等式:a3=15×7=12×15−17 ;
第4个等式:a4=17×9=12×17−19 ;
……
请解答下列问题:
(1)按以上规律列出第5个等式:a5= __________________.
(2)用含n的代数式表示第n个等式:an= ___________________________(n 为正整数).
(3)求a1+a2+a3+a4+⋯+a100 的值.
人教版(2024新版)七年级上册数学期中模拟测试卷·教师版
(满分:120分 时间:120分钟)
一、选择题(共10题,每题3分,共30分.在每题给出的四个选项中,只有一项符合题目要求)
1.−2 024 的绝对值是( B )
A. −2 024 B. 2 024 C. 12 024 D. −12 024
2.若a=4,b=−2,则代数式a−ab 的值为( D )
A. 14 B. 24 C. 20 D. 12
3.代数式表示的意义是( D )
A. a与b的和 B. a与b 的倒数和
C. a与b的倒数的和 D. a与b 的和的倒数
4.下列各对数中,互为相反数的是( C )
A. −(+3)与+(−3) B. −(−4)与|−4| C. −32与(−3)2 D. −23与(−2)2
5.元旦是公历新一年的第一天.“元旦”一词最早出现于《晋书》:“颛帝以孟夏正月为元,其实正朔元旦之春.”中国古代曾以腊月、十月等的月首为元旦,1949年中华人民共和国以公历1月1日为元旦,因此元旦在中国也被称为“阳历年”.为庆祝元旦,郑州某商场举行促销活动,促销的方法是“消费超过200元时,所购买的商品按原价打八折后,再减少20元”.若某商品的原价为x(x>200) 元,则购买该商品实际付款( A )
A. (80%x−20)元 B. 80%(x−20) 元 C. (20%x−20)元 D. 20%(x−20) 元
6.下列计算正确的是( C )
A. −5−2=−3 B. −2÷13×3=−2 C. −423=−163 D. 322=92
某商店2023年四个季度的商品销售盈亏情况如下表所示(盈余为正):
则该商店2023年的盈亏情况是( C )
A. 盈余644万元B. 亏本173万元C. 盈余173万元D. 亏本644万元
8.下列代数式中,不能表示图中阴影部分面积的是( B )
A. 3(x+2)+x2B. x2+5x C. (x+3)(x+2)−2x D. x(x+3)+6
9.已知|m|=4,|n|=6,且m+n=|m+n|,则m−n= ( D )
A. −10B. −2C. 2 D. −2或−10
10.有若干片相同的拼图,其形状如图1所示(单位:cm ),凸出的部分是直径为4 cm 的半圆,且拼图沿水平方向排列时可紧密拼成一行,此时底部可与直线贴齐.当4片拼图紧密拼成一行时长度为38 cm ,如图2所示.下列结论正确的是( D )
A. 依题意,有4(a+b)=38
B. 1片拼图的长度为9.5 cm
C. 将拼图紧密拼成一行时,每增加一片拼图,总长度增加11 cm
D. 将n 片拼图紧密拼成一行时,总长度为(9n+2)cm
−0.03 g
二、填空题(共5题,每题3分,共15分)
11.若超出标准质量0.05 g记作+0.05 g,则低于标准质量0.03 g 记作_________.
−4(答案不唯一)
12.中国是世界上最早使用负数的国家.请写出一个比−4.5 大的负整数:__________________.
2.498×106
13.2024年“五一”假期首日,游客出游热情高涨.据湖北省文旅厅数据显示,湖北省a级旅游景区共接待游客249.8万人次.将数据249.8万用科学记数法表示为_____________.
14.已知,数轴上a,b,c三点表示的有理数分别为a,b,c ,其中点a在点b左侧,a,b两点间的距离为4,且a,b,c 满足|a+b|+(c−2 024)2=0 ,则
2 024
(1)c 的值为_______.
2
(2)数轴上任意一点P表示的数为x,若存在x 使|x−a|+|x−b|+|x−c|的值最小,则x 的值为___.
15.一种新运算,规定有以下两种变换:
①f(m,n)=(m,−n),如f(3,2)=(3,−2) .
−5,−6
②g(m,n)=(−m,−n),如g(3,2)=(−3,−2) .按照以上变换,如果f[g(3,4)]=f(−3,−4)=(−3,4) ,那么g[f(5,−6)]= _________.
三、解答题(共9题,共75分,解答应写出文字说明、证明过程或验算步骤)
16.(6分)把下列各数填在相应的集合内:
4,−7
−5,+1/3,0.62,4,0,−1.1,−(−7/6),−6.4,−7,−71/3,|−7| .
−5,−1.1,−6.4,−7,−713
正整数集合:{_______…}.
+13,0.62,4,0,−−76,−7
负有理数集合:{___________________________…}.
非负数集合:{_______________________________…}.
17.(6分)计算:
(1)−14−−6+2−3×−13 .
解:原式=−1+6+2+1
=8 .
(2)29−14+118÷−136 .
解:原式=29×−36−14×−36+118×−36
=−8+9−2
=−1 .
18.(6分)若长方形的长、宽分别为x,y ,面积保持不变,下表给出了x与y 的一些值:
(1)请根据表格信息用式子表示y与x的关系,并判断y与x 成什么比例关系.
解:∵ 面积保持不变,∴ 面积为1×4=4 .
∴y=4x,y与x 成反比例关系.
(2)根据y与x 的关系式完成上表.
解:6; 2; 12
19.(8分)计算不规则图形的面积时,有时采用“方格法”,具体计算方法如下:假定每个小方格的边长为1,S为图形的面积,L是边界上的格点数,n 是内部格点数,则有S=+n−1 .请根据此方法计算图中四边形ABCD 的面积.
解:由图可知,边界上的格点数L=8,内部格点数N=12 ,
∴ 四边形ABCD的面积S=L2+N−1=82+12−1=15 .
20.(8分)如图,这是黄冈市18路公交的部分站点示意图.某天,小王参加公交志愿者服务活动,从十字街站出发,最后在a站结束服务活动.如果规定向东方京城方向为正,小王当天的乘车站数按先后顺序依次记录如下(单位:站):+5,−3,+4,−5,−2,+1,−3,+4 ,+1 .
(1)请通过计算说明a 站是哪一站.(写站名)
解:+5−3+4−5−2+1−3+4+1=+2 (站).
答:A站为奥康步行街.
(2)若相邻两站之间的平均距离约为0.8千米,求这次小王志愿服务期间乘公交行进的总路程约是多少千米.
解:5+3+4+5+2+1+3+4+1×0.8=28×0.8=22.4
(千米).
21.(8分)某游泳馆的普通票价为20元/张,暑假期间该游泳馆新推出两种优惠卡:
金卡:售价为600元/张,每次游泳凭卡不再收费.
银卡:售价为150元/张,每次游泳凭卡另收10元.
已知小王同学暑假期间到该游泳馆游泳x 次.
(1)求小王选择办理两种卡分别需要的费用.
解:办理金卡需要的费用为600元,办理银卡需要的费用为
150+10x 元.
(2)若x=50 ,则小王选择哪种优惠卡更合算?
解:当x=50 时,选择金卡需要600元,
选择银卡需要150+10×50=650 (元).
∵600<650,∴ 选择金卡更合算.
22.(10分)又到一年白菜丰收时,白菜种植基地某蔬菜种植大户装了10袋白菜准备销售,称得质量如下(单位:千克).
199,198,198.5,201,199.5,202,197,200.5,203,201.5 .
(1)每袋白菜超过200千克的记为正数,不足200千克的记为负数.请用正、负数表示这10袋白菜的质量,并计算这10袋白菜的总质量.
解:这10袋白菜的质量分别为−1,−2,−1.5,+1,−0.5,+2 ,
−3,+0.5,+3,+1.5 .
∵−1−2−1.5+1−0.5+2−3+0.5+3+1.5=0 ,
∴ 这10袋白菜的总质量为200×10+0=2 000 (千克).
(2)若这种白菜的批发价为每千克0.3元,今年该镇白菜种植500公顷,每公顷的平均产量估计为100 000千克,则该镇当季白菜产值可以达到多少万元?
解:依题意,得500×100 000×0.3=15 000 000=1 500
(万元).
答:该镇当季白菜产值可以达到1 500万元.
23.(11分)如图所示,在长和宽分别是a,b 的长方形纸片的四个角都剪去一个边长为x 的正方形,折叠后做成一个无盖的盒子(单位:cm ).
(1)用含a,b,x 的代数式表示纸片剩余部分的面积.
解:纸片剩余部分的面积为ab−4x2cm2 .
(2)用含a,b,x 的代数式表示盒子的体积.
解:盒子的体积为xa−2xb−2xcm3 .
(3)当a=10,b=8 且剪去的每一个小正方形的面积等于4 cm2 时,求剪去的每个小正方形的边长及所做成的盒子的体积.
解:由x2=4,且x>0,得x=2 .
当a=10,b=8,x=2 时,
xa−2xb−2x=2×10−2×2×8−2×2=2×6×4=48cm3 .
24.(12分)观察下列等式:
第1个等式:a1=11×3=12×1−13 ;
第2个等式:a2=13×5=12×13−15 ;
第3个等式:a3=15×7=12×15−17 ;
第4个等式:a4=17×9=12×17−19 ;
请解答下列问题:
19×11=12×19−111
(1)按以上规律列出第5个等式:a5= __________________.
12n−12n+1=1212n−1−12n+1
(2)用含n的代数式表示第n个等式:an= ___________________________(n 为正整数).
(3)求a1+a2+a3+a4+⋯+a100 的值.
解:a1+a2+a3+a4+⋯+a100
=12×1−13+12×13−15+12×15−17+12×17−19+⋯+12×1199−1201
=12×1−13+13−15+15−17+17−19+⋯+1199−1201
=12×1−1201
=12×200201
=100201 .
季度
第一季度
第二季度
第三季度
第四季度
盈亏额/万元
+128.5
−140
−95.5
+280
x
1
2
8
y
4
季度
第一季度
第二季度
第三季度
第四季度
盈亏额/万元
+128.5
−140
−95.5
+280
x
1
2
8
y
4
相关试卷
这是一份初中数学人教版(2024)七年级上册(2024)3.1 代数式课时作业,共16页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份人教版(2024新版)七年级上册数学期中测试卷(1-3章)(含答案解析),共17页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份北师大版(2024新版)七年级上册数学期中学情评估检测试卷(含答案解析),共11页。试卷主要包含了选择题,填空题,解答题,解答题.等内容,欢迎下载使用。