2024年山东省威海市文登区文登实验,三里河中学数学九上开学调研模拟试题【含答案】
展开
这是一份2024年山东省威海市文登区文登实验,三里河中学数学九上开学调研模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)化简的结果是( )
A.B.C.D.
2、(4分)如图是某射击选手5次设计成绩的折线图,根据图示信息,这5次成绩的众数、中位数分别是( )
A.7、8 B.7、9 C.8、9 D.8、10
3、(4分)《中国诗词大会》是央视科教频道自主研发的一档大型文化益智节目,节目带动全民感受诗词之趣,分享诗词之美,从古人的智慧和情怀中汲取营养,涵养心灵.比赛中除了来自复旦附中的才女武亦姝表现出色外,其他选手的实力也不容小觑.下表是随机抽取的10名挑战者答对的题目数量的统计表,则这10名挑战者答对的题目数量的中位数为答对题数( )
A.4B.5C.6D.7
4、(4分)已知m=,n=,则代数式的值为 ( )
A.3B.3C.5D.9
5、(4分)某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x台机器,根据题意,下面列出的方程正确的是( )
A.B.
C.D.
6、(4分)两次小测验中,李红分别得了64分(满分80分)和82分(满分100分),如果都按满分100分计算,李红两次成绩的平均分为( )
A.73B.81C.64.8D.80
7、(4分)将一张矩形纸片按照如图 所示的方式折叠,然后沿虚线 AB 将阴影部分剪下,再将 剪下的阴影部分纸片展开,所得到的平面图形是( )
A.直角三角形B.等腰三角形C.矩形D.菱形
8、(4分)如图①,四边形ABCD中,BC∥AD,∠A=90°,点P从A点出发,沿折线AB→BC→CD运动,到点D时停止,已知△PAD的面积s与点P运动的路程x的函数图象如图②所示,则点P从开始到停止运动的总路程为( )
A.4B.9C.10D.4+
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在矩形中,,是上的一点,将矩形沿折叠后,点落在边的点上,则的长为_________.
10、(4分)我国古代数学著作《九章算术》有一个问题:一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处,1丈=10尺,那么折断处离地面的高度是__________尺.
11、(4分)已知整数x、y满足+3=,则的值是______.
12、(4分)在函数y=中,自变量x的取值范围是_____.
13、(4分)如图,△A1B1A2,△A2B2A3,△A3B3A4,...,△AnBnAn+1都是等腰直角三角形,其中点A1、A2、…、An,在x轴上,点B1、B2、…Bn在直线y=x上,已知OA1=1,则OA2019的长是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,正方形AOCB的边长为4,反比例函数的图象过点E(3,4).
(1)求反比例函数的解析式;
(2)反比例函数的图象与线段BC交于点D,直线过点D,与线段AB相交于点F,求点F的坐标;
(3)连接OF,OE,探究∠AOF与∠EOC的数量关系,并证明.
(4)若点P是x轴上的动点,点Q是(1)中的反比例函数在第一象限图象上的动点,且使得△PDQ为等腰直角三角形,请求出点P的坐标.
15、(8分)如图,已知四边形ABCD是平行四边形,小慧同学利用直尺和规进行了如下操作:①连接AC,分别以点A、C为圆心,以大于AC的长为半径画弧,两弧相交于点P、Q;②作直线PQ,分别交BC、AC、AD于点E、O、F,连接AE、CF.根据操作结果,解答下列问题:
(1)线段AF与CF的数量关系是 .
(2)若∠BAD=120°,AE平分∠BAD,AB=8,求四边形AECF的面积.
16、(8分)手机可以通过“个人热点”功能实现移动网络共享,小明和小亮准备到操场上测试个人热点连接的有效距离,他们从相距的,两地相向而行.图中,分别表示小明、小亮两人离地的距离与步行时间之间的函数关系,其中的关系式为.根据图象回答下列问题:
(1)请写出的关系式___________;
(2)小明和小亮出发后经过了多长时间相遇?
(3)如果手机个人热点连接的有效距离不超过,那么他们出发多长时间才能连接成功?连接持续了多长时间?
17、(10分)甲、乙两人分别骑自行车和摩托车沿相同路线由A地到相距80千米的B地,行驶过程中的函数图像如图所示。
(1)请根据图像回答下列问题:甲先出发 小时后,乙才出发;在甲出发 小时后两人相遇,这时他们距A地 千米;
(2)乙的行驶速度 千米/小时;
(3)分别求出甲、乙在行驶过程中的路程(千米)与时间(小时)之间的函数关系式(不要求写出自变量的取值范围)。
18、(10分)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:
①金卡售价600元/张,每次凭卡不再收费.
②银卡售价150元/张,每次凭卡另收10元.
暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.
(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;
(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;
(3)请根据函数图象,直接写出选择哪种消费方式更合算.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)梯形ABCD中,AD∥BC,E在线段AB上,且2AE=BE,EF∥BC交CD于F,AD=15,BC=21,则EF=__________.
20、(4分)反比例函数 y=的图象同时过 A(-2,a)、B(b,-3)两点,则(a-b)2=__.
21、(4分)在△ABC中,边AB、BC、AC的垂直平分线相交于P,则PA、PB、PC的大小关系是________.
22、(4分)已知,,,,,……(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,____________.
23、(4分)如图,已知线段,是直线上一动点,点,分别为,的中点,对下列各值:①线段的长;②的周长;③的面积;④直线,之间的距离;⑤的大小.其中不会随点的移动而改变的是_____.(填序号)
二、解答题(本大题共3个小题,共30分)
24、(8分)因为一次函数y=kx+b与y=-kx+b(k≠0)的图象关于y轴对称,所以我们定义:函数y=kx+b与y=-kx+b(k≠0)互为“镜子”函数.
(1)请直接写出函数y=3x-2的“镜子”函数:______________;
(2)如果一对“镜子”函数y=kx+b与y=-kx+b(k≠0)的图象交于点A,且与x轴交于B、C两点,如图所示,若△ABC是等腰直角三角形,∠BAC=90°,且它的面积是16,求这对“镜子”函数的解析式.
25、(10分)如图,矩形中,点分别在边与上,点在对角线上,,.
求证:四边形是平行四边形.
若,,,求的长.
26、(12分)为了维护国家主权和海洋权力,海监部门对我国领海实行常态化巡航管理,如图,正在执行巡航任务的海监船以每小时30海里的速度向正东方航行,在处测得灯塔在北偏东60°方向上, 继续航行后到达处, 此时测得灯塔在北偏东30°方向上.
(1) 求的度数;
(2)已知在灯塔的周围15海里内有暗礁,问海监船继续向正东方向航行是否安全?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
首先将分子、分母进行因式分解,然后根据分式的基本性质约分.
【详解】
解:,
故选D.
2、A
【解析】
试题分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据.
解:在这一组数据中7是出现次数最多的,故众数是
将这组数据从小到大的顺序排列(7,7,8,9,10),处于中间位置的那个数是8,
则这组数据的中位数是8;
故选B.
考点:众数;中位数.
3、B
【解析】
将这组数据从小到大的顺序排列后,根据中位数的定义就可以求解.
【详解】
解:将这组数据从小到大的顺序排列后,处于中间位置第1和第6个数是1、1,那么由中位数的定义可知,这组数据的中位数是1.
故选:B.
本题为统计题,考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
4、B
【解析】
由已知可得:,=.
【详解】
由已知可得:,
原式=
故选:B
考核知识点:二次根式运算.配方是关键.
5、B
【解析】
由题意分别表达出原来生产480台机器所需时间和现在生产600台机器所需时间,然后根据两者相等即可列出方程,再进行判断即可.
【详解】
解:设原计划每天生产x台机器,根据题意得:
.
故选B.
读懂题意,用含x的代数式表达出原来生产480台机器所需时间为天和现在生产600台机器所需时间为天是解答本题的关键.
6、B
【解析】
李红得分和竞赛试卷的满分100的比值一定,所以李红应的分和竞赛试卷的满分是100分成正比例,由此列式解答即可.
【详解】
解:设李红应得 x分,
则,
1x=6400,
x=1.
∴李红两次成绩的平均分为:,
故选B.
本题考查了比例在日常生活中的应用,要正确判断哪两种量成正比例.
7、D
【解析】
解答该类剪纸问题,通过自己动手操作即可得出答案;或者通过折叠的过程可以发现:该四边形的对角线互相垂直平分,继而进行判断.
【详解】
解:易得阴影部分展开后是一个四边形,
∵四边形的对角线互相平分,
∴是平行四边形,
∵对角线互相垂直,
∴该平行四边形是菱形,
故选:D.
本题主要考查了剪纸问题,学生的分析能力,培养学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.
8、D
【解析】
根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线AE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.
【详解】
作CE⊥AD于点E,如下图所示,
由图象可知,点P从A到B运动的路程是2,当点P与点B重合时,△ADP的面积是5,由B到C运动的路程为2,
∴ =5,
解得,AD=5,
又∵BC∥AD,∠A=90°,CE⊥AD,
∴∠B=90°,∠CEA=90°,
∴四边形ABCE是矩形,
∴AE=BC=2,
∴DE=AD−AE=5−2=3,
∴CD==,
∴点P从开始到停止运动的总路程为:AB+BC+CD=2+2+=4+,
故选D.
此题考查动点问题的函数图象,解题关键在于利用勾股定理进行计算
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
首先求出DF的长度,进而求出AF的长度;根据勾股定理列出关于线段AE的方程即可解决问题.
【详解】
设AE=x,
由题意得:
FC=BC=10,BE=EF=8-x;
∵四边形ABCD为矩形,
∴∠D=90°,DC=AB=8,
由勾股定理得:
DF2=102-82=16,
∴DF=6,AF=10-6=4;
由勾股定理得:
EF2=AE2+AF2,
即(8-x)2= x2+42
解得:x=1,
即AE=1.
故答案为:1.
该命题以正方形为载体,以翻折变换为方法,以考查勾股定理、全等三角形的性质为核心构造而成;解题的关键是灵活运用有关定理来分析、判断或解答.
10、4.1
【解析】
竹子折断后刚好构成一直角三角形,设竹子折断处离地面的高度是x尺,则斜边为(10-x)尺.利用勾股定理解题即可.
【详解】
解:1丈=10尺,
设折断处离地面的高度为x尺,则斜边为(10-x)尺,
根据勾股定理得:x2+32=(10-x)2
解得:x=4.1.
答:折断处离地面的高度为4.1尺.
故答案为:4.1.
此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.
11、6或2或2
【解析】
由+3==6,且x、y均为整数,可得=,3=0或=3,3=3或=0,3=,分别求出x、y的值,进而求出.
【详解】
∵+3==6,
又x、y均为整数,
∴=,3=0或=3,3=3或=0,3=,
∴x=72,y=0或x=18,y=2或x=0,y=8,
∴=6或2或2.
故答案为:6或2或2.
本题考查了算术平方根,二次根式的化简与性质,进行分类讨论是解题的关键.
12、x≥﹣2且x≠1.
【解析】
根据二次根式的非负性及分式有意义的条件来求解不等式即可.
【详解】
解:根据题意,得:x+2≥1且x≠1,
解得:x≥﹣2且x≠1,
故答案为x≥﹣2且x≠1.
二次根式及分式有意义的条件是本题的考点,正确求解不等式是解题的关键.
13、1
【解析】
根据一次函数的性质可得∠B1OA1=45°,然后求出△OA2B2是等腰直角三角形,△OA3B2是等腰直角三角形,然后根据等腰直角三角形斜边上的高等于斜边的一半求出OA3,同理求出OA4,然后根据变化规律写出即可.
【详解】
解:∵直线为y=x,
∴∠B1OA1=45°,
∵△A2B2A3,
∴B2A2⊥x轴,∠B2A3A2=45°,
∴△OA2B2是等腰直角三角形,△OA3B2是等腰直角三角形,
∴OA3=2A2B2=2OA2=2×2=4,
同理可求OA4=2OA3=2×4=23,
…,
所以,OA2019=1.
故答案为:1.
本题考查了一次函数图象上点的坐标特征,等腰直角三角形的性质,熟记性质并确定出等腰直角三角形是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)y=;(2)点F的坐标为(2,4);(3)∠AOF=∠EOC,理由见解析;(4)P的坐标是(,0)或(-5,0)或(,0)或(5,0)
【解析】
(1)设反比例函数的解析式为y=,把点E(3,4)代入即可求出k的值,进而得出结论;
(2)由正方形AOCB的边长为4,故可知点D的横坐标为4,点F的纵坐标为4,由于点D在反比例函数的图象上,所以点D的纵坐标为3,即D(4,3),由点D在直线上可得出b的值,进而得出该直线的解析式,再把y=4代入直线的解析式即可求出点F的坐标;
(3)在CD上取CG=AF=2,连接OG,连接EG并延长交x轴于点H,由全等三角形的判定定理可知△OAF≌△OCG,△EGB≌△HGC(ASA),故可得出EG=HG,设直线EG的解析式为y=mx+n,把E(3,4),G(4,2)代入即可求出直线EG的解析式,故可得出H点的坐标,在Rt△AOF中,AO=4,AE=3,根据勾股定理得OE=5,可知OC=OE,即OG是等腰三角形底边EF上的中线,所以OG是等腰三角形顶角的平分线,由此即可得出结论;
(4)分△PDQ的三个角分别是直角,三种情况进行讨论,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,即可构造全等的直角三角形,设出P的坐标,根据点在图象上,则一定满足函数的解析式即可求解,
【详解】
解:
(1)设反比例函数的解析式y=,
∵反比例函数的图象过点E(3,4),
∴4=,即k=12,
∴反比例函数的解析式y=;
(2)∵正方形AOCB的边长为4,
∴点D的横坐标为4,点F的纵坐标为4,
∵点D在反比例函数的图象上,
∴点D的纵坐标为3,即D(4,3),
∵点D在直线y=﹣x+b上,
∴3=﹣×4+b,
解得:b=5,
∴直线DF为y=﹣x+5,
将y=4代入y=﹣x+5,
得4=﹣x+5,
解得:x=2,
∴点F的坐标为(2,4),
(3)∠AOF=∠EOC,理由为:
证明:在CD上取CG=AF=2,连接OG,连接EG并延长交x轴于点H,
,
∴△OAF≌△OCG(SAS),
∴∠AOF=∠COG,
,
∴△EGB≌△HGC(ASA),
∴EG=HG,
设直线EG:y=mx+n,
∵E(3,4),G(4,2),
∴,
解得,
∴直线EG:y=﹣2x+10,
令y=﹣2x+10=0,得x=5,
∴H(5,0),OH=5,
在Rt△AOE中,AO=4,AE=3,根据勾股定理得OE=5,
∴OH=OE,
∴OG是等腰三角形底边EH上的中线,
∴OG是等腰三角形顶角的平分线,
∴∠EOG=∠GOH,
∴∠EOG=∠GOC=∠AOF,
即∠AOF=∠EOC;
(4)当Q在D的右侧(如图1),且∠PDQ=90°时,作DK⊥x轴,作QL⊥DK,于点L,
则△DPK≌△QDK,
设P的坐标是(a,0),则KP=DL=4-a,QL=DK=3,则Q的坐标是(4+3,4-3+a)即(7,-1+a),
把(7,-1+a)代入y=得:
7(-1+a)=12,
解得:a=,
则P的坐标是(,0);
当Q在D的左侧(如图2),且∠PDQ=90°时,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,
则△QDL≌△PDK,
则DK=DL=3,设P的坐标是b,则PK=QL=4-b,则QR=4-b+3=7-b,OR=OK-DL=4-3=1,
则Q的坐标是(1,7-b),代入y=得:
b=-5,
则P的坐标是(-5,0);
当Q在D的右侧(如图3),且∠DQP=90°时,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,
则△QDL≌△PQK,则DK=DL=3,
设Q的横坐标是c,则纵坐标是,
则QK=QL=,
又∵QL=c-4,
∴c-4=,
解得:c=-2(舍去)或6,
则PK=DL=DR-LR=DR-QK=3-=1,
∴OP=OK-PK=6-1=5,
则P的坐标是(5,0);
当Q在D的左侧(如图3),且∠DQP=90°时,不成立;
当∠DPQ=90°时,(如图4),作DK⊥x轴,作QR⊥x轴,
则△DPR≌△PQK,
∴DR=PK=3,RP=QK,
设P的坐标是(d,0),
则RK=QK=d-4,
则OK=OP+PK=d+3,
则Q的坐标是(d+3,d-4),代入y=得:
(d+3)(d-4)=12,
解得:d=或(舍去),
则P的坐标是(,0),
综上所述,P的坐标是(,0)或(-5,0)或(,0)或(5,0),
本题是反比例函数综合题,掌握待定系数法求解析式,反比例函数的性质是解题的关键.
15、(1)FA=FC;(2)
【解析】
(1)根据基本作图和线段垂直平分线的性质进行判断;
(2))由AE平分∠BAD得到∠BAE=∠DAE=∠BAD=60°,利用平行四边形的性质得AD∥BC,则∠AEB=∠DAE=60°,所以△ABE为等边三角形,则AE=AB=8,∠B=60°,于是可计算出AC=AB=8,再证明△AEF为等边三角形得到EF=8,然后根据三角形面积公式利用四边形AECF的面积=EF×AC进行计算.
【详解】
解:(1)由作法得EF垂直平分AC,
所以FA=FC.
故答案为FA=FC;
(2)∵AE平分∠BAD,
∴∠BAE=∠DAE=∠BAD=60°,
∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠AEB=∠DAE=60°,
∴△ABE为等边三角形,
∴AE=AB=8,∠B=60°,
∵EA=EC,
∴∠EAC=∠ECA=∠AEB=30°,
∴AC=AB=8,
∵∠CAD=60°-30°=30°,
即OA平分∠EAF,
∴AF=AE=8,
∴△AEF为等边三角形,
∴EF=8,
∴四边形AECF的面积=.
本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.
16、(1);(2)经过后二者相遇;(3)出发时才能连接,持续了
【解析】
(1) 设的解析式为y=kx,把(100,100)代入求解即可;
(2)把函数解析式联立方程组,求得方程组的解即可;
(3) 设当出发时相距,小亮速度为,得出,求解即可得出出发32s才能连接成功;再求出t=48s连接断开,即可求出持续的时间.
【详解】
解:(1)设的解析式为y=kx,
把(100,100)代入得,100=100k,
∴k=1
∴.
故答案为y=x.
(2)由题意得
解得
经过后二者相遇.
(3)解:设当出发时相距,
由题知,小亮速度为.
解得,
∴他们出发32s才能连接成功;
当
解得,即t=48s连接断开,
故连接了
出发时才能连接,持续了.
此题考查一次函数的实际运用,待定系数法求函数解析式,以及结合图象理解题意解决有关的行程问题.
17、(1)3,4,40 (2)40 (3)y=40x-120
【解析】
(1)观察函数图象,即可得出结论;
(2)根据速度=路程时间,即可算出乙的行驶速度;
(3)根据速度=路程时间,求出甲的行驶速度,再结合甲的图象过原点O即可写出甲的函数表达式;设出乙的函数表达式为y=kx+b(k≠0),结合点的坐标利用待定系数法即可求出乙的函数表达式.
【详解】
解:(1)观察函数图象,发现: 甲先出发3小时后,乙才出发;在甲出发4小时后,两人相遇,这时他们离A地40千米. 故答案为:3;4;40.
(2)乙行驶的速度为:80÷(5-2)=40(千米/小时),故答案为:40.
(3)甲的速度为:80÷8=10(千米/小时),
∵甲的函数图象过原点(0,0),
甲的函数表达式:y=10x;
设乙的函数表达式为y=kx+b(k≠0)
点(3,0)和(5,80)在乙的图象上,
有0=3k+b 80=5k+b解得k=40 b=-120,
故乙的函数表达式:y=40x-120.
本题考查一次函数的应用,涉及利用待定系数法求一次函数、一次函数图像的性质知识点,学生们需要认真的分析.
18、(1)银卡消费:y=10x+150,普通消费:y=20x;(2)A(0,150),B(15,300),C(45,600);(3)答案见解析.
【解析】
试题分析:(1)根据银卡售价150元/张,每次凭卡另收10元,以及旅游馆普通票价20元/张,设游泳x次时,分别得出所需总费用为y元与x的关系式即可;
(2)利用函数交点坐标求法分别得出即可;
(3)利用(2)的点的坐标以及结合得出函数图象得出答案.
解:(1)由题意可得:银卡消费:y=10x+150,普通消费:y=20x;
(2)由题意可得:当10x+150=20x,
解得:x=15,则y=300,
故B(15,300),
当y=10x+150,x=0时,y=150,故A(0,150),
当y=10x+150=600,
解得:x=45,则y=600,
故C(45,600);
(3)如图所示:由A,B,C的坐标可得:
当0<x<15时,普通消费更划算;
当x=15时,银卡、普通票的总费用相同,均比金卡合算;
当15<x<45时,银卡消费更划算;
当x=45时,金卡、银卡的总费用相同,均比普通票合算;
当x>45时,金卡消费更划算.
【点评】此题主要考查了一次函数的应用,根据数形结合得出自变量的取值范围得出是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、17
【解析】
过作构造平行四边形及相似三角形,利用平行四边形及相似三角形的性质可得答案.
【详解】
如图,过作交于,交于,因为AD∥BC,EF∥BC,
所以四边形 四边形,四边形都为平行四边形,则,
因为,所以,
因为EF∥BC,所以,所以,
因为2AE=BE,,,
所以,所以,所以.
故答案为:.
本题考查等腰梯形中通过作腰的平行线构造平行四边形及相似三角形,考查平行四边形的性质及相似三角形的性质,掌握这些性质是解题的关键.
20、
【解析】
先将A(-2,a)、B(b,-3)两点的坐标代入反比例函数的解析式y=,求出a、b的值,再代入(a-b)2,计算即可.
【详解】
∵反比例函数y=的图象同时过A(−2,a)、B(b,−3)两点,
∴a= =−1,b= = ,
∴(a−b) 2=(−1+) 2= .
故答案为.
此题考查反比例函数图象上点的坐标特征,解题关键在于把已知点代入解析式
21、PA=PB=PC
【解析】
解:∵边AB的垂直平分线相交于P,
∴PA=PB,
∵边BC的垂直平分线相交于P,
∴PB=PC,
∴PA=PB=PC.
故答案为:PA=PB=PC.
22、-
【解析】
根据Sn数的变化找出Sn的值每6个一循环,结合2018=336×6+2,即可得出S2018=S2,此题得解.
【详解】
解:S1=,S2=-S1-1=--1=-,S3==-,S4=-S3-1= ,=-(a+1),S6=-S5-1=(a+1)-1=a,S7= ,…,
∴Sn的值每6个一循环.
∵2018=336×6+2,
∴S2018=S2=-.
故答案为:-.
此题考查规律型中数字的变化类,根据数值的变化找出Sn的值,每6个一循环是解题的关键.
23、①③④
【解析】
根据中位线的性质,对线段长度、三角形周长和面积、角的变化情况进行判断即可.
【详解】
点,为定点,点,分别为,的中点,
是的中位线,
,
即线段的长度不变,故①符合题意,
、的长度随点的移动而变化,
的周长会随点的移动而变化,故②不符合题意;
的长度不变,点到的距离等于与的距离的一半,
的面积不变,故③符合题意;
直线,之间的距离不随点的移动而变化,故④符合题意;
的大小点的移动而变化,故⑤不符合题意.
综上所述,不会随点的移动而改变的是:①③④.
故答案为:①③④.
本题考查了三角形的动点问题,掌握中位线的性质、线段长度的性质、三角形周长和面积的性质、角的性质是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)y=-3x-2;(2)y=-x+1与y=x+1
【解析】
(1)直接利用“镜子”函数的定义得出答案;
(2)利用等腰直角三角形的性质得出AO=BO=CO,进而得出各点坐标,即可得出函数解析式.
【详解】
(1)根据题意可得:函数y=3x-2的“镜子”函数:y=-3x-2;
故答案为:y=-3x-2;
(2)∵△ABC是等腰直角三角形,AO⊥BC,
∴AO=BO=CO,
∴设AO=BO=CO=x,根据题意可得:x×2x=16,
解得:x=1,
则B(-1,0),C(1,0),A(0,1),
将B,A分别代入y=kx+b得:
,
解得:,
故其函数解析式为:y=x+1,
故其“镜子”函数为:y=-x+1.
此题主要考查了待定系数法求一次函数解析式以及等腰直角三角形的性质,得出各点坐标是解题关键.
25、(1)证明见详解;(2)1
【解析】
(1)依据矩形的性质,即可得出△AEG≌△CFH,进而得到GE=FH,∠CHF=∠AGE,由∠FHG=∠EGH,可得FH∥GE,即可得到四边形EGFH是平行四边形;
(2)由菱形的性质,即可得到EF垂直平分AC,进而得出AF=CF=AE,设AE=x,则FC=AF=x,DF=8-x,依据Rt△ADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的长.
【详解】
解:(1)∵矩形ABCD中,AB∥CD,
∴∠FCH=∠EAG,
又∵CD=AB,BE=DF,
∴CF=AE,
又∵CH=AG,
∴△AEG≌△CFH,
∴GE=FH,∠CHF=∠AGE,
∴∠FHG=∠EGH,
∴FH∥GE,
∴四边形EGFH是平行四边形;
(2)如图,连接EF,AF,
∵EG=EH,四边形EGFH是平行四边形,
∴四边形GFHE为菱形,
∴EF垂直平分GH,
又∵AG=CH,
∴EF垂直平分AC,
∴AF=CF=AE,
设AE=x,则FC=AF=x,DF=8-x,
在Rt△ADF中,AD2+DF2=AF2,
∴42+(8-x)2=x2,
解得x=1,
∴AE=1.
此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的运用.注意准确作出辅助线是解此题的关键.
26、(1)30°;(2)海监船继续向正东方向航行没有触礁的危险,见解析
【解析】
(1)在△ABC中,求出∠CAB、∠CBA的度数即可解决问题;
(2)作CD⊥AB于D.求出CD的值即可判定;
【详解】
解:(1)由题意得,∠CAB=30°,∠CBA=30°+90°=120°
∴∠ACB=180°-∠CBA-∠CAB=30°;
(2)由(1)可知∠ACB=∠CAB=30°,
∴AB=CB=30×=20(海里), ∠CBD=60°,
过点C作CD⊥AB于点D,在Rt△CBD中,
CD=BCsin60°=10(海里)
10>15
∴海监船继续向正东方向航行是安全的.
本题考查了解直角三角形的应用-方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.
题号
一
二
三
四
五
总分
得分
答对题数
4
5
7
8
人数
3
4
2
1
相关试卷
这是一份山东省威海市文登区文登实验、三里河中学2023-2024学年九上数学期末复习检测试题含答案,共7页。试卷主要包含了下列事件中,必然事件是等内容,欢迎下载使用。
这是一份2023-2024学年山东省威海市文登区文登实验,三里河中学数学九上期末学业质量监测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,抛物线y=ax2+bx+c等内容,欢迎下载使用。
这是一份山东省威海市文登区文登实验、三里河中学2023-2024学年数学八上期末达标检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。