年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    沪科版八年级数学上册举一反三系列专题13.2三角形内角和定理的运用【八大题型】练习(原卷版+解析)

    沪科版八年级数学上册举一反三系列专题13.2三角形内角和定理的运用【八大题型】练习(原卷版+解析)第1页
    沪科版八年级数学上册举一反三系列专题13.2三角形内角和定理的运用【八大题型】练习(原卷版+解析)第2页
    沪科版八年级数学上册举一反三系列专题13.2三角形内角和定理的运用【八大题型】练习(原卷版+解析)第3页
    还剩35页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版八年级数学上册举一反三系列专题13.2三角形内角和定理的运用【八大题型】练习(原卷版+解析)

    展开

    这是一份沪科版八年级数学上册举一反三系列专题13.2三角形内角和定理的运用【八大题型】练习(原卷版+解析),共38页。
    专题13.2 三角形内角和定理的运用【八大题型】【沪科版】TOC \o "1-3" \t "正文,1" \hTOC \o "1-1" \h \u  HYPERLINK \l "_Toc7550" 【题型1 运用三角形内角和定理直接求角的度数】  PAGEREF _Toc7550 \h 1 HYPERLINK \l "_Toc2836" 【题型2 三角形内角和定理与角平分线、高线综合】  PAGEREF _Toc2836 \h 2 HYPERLINK \l "_Toc26832" 【题型3 三角形内角和定理与平行线的性质综合】  PAGEREF _Toc26832 \h 3 HYPERLINK \l "_Toc12177" 【题型4 三角形内角和定理与折叠性质综合】  PAGEREF _Toc12177 \h 4 HYPERLINK \l "_Toc286" 【题型5 三角形内角和定理与新定义问题综合】  PAGEREF _Toc286 \h 5 HYPERLINK \l "_Toc2555" 【题型6 运用三角形内角和定理探究角的数量关系】  PAGEREF _Toc2555 \h 6 HYPERLINK \l "_Toc27146" 【题型7 判断直角三角形】  PAGEREF _Toc27146 \h 8 HYPERLINK \l "_Toc16473" 【题型8 运用直角三角形两锐角互余的性质倒角】  PAGEREF _Toc16473 \h 9【知识点1 三角形的内角及内角和定理】三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.三角形内角和定理:三角形内角和是180°.【题型1 运用三角形内角和定理直接求角的度数】【例1】(2021秋•涡阳县期末)在△ABC中,已知∠B=∠A+10°,∠C=∠B+25°,求∠A的度数.【变式1-1】(2022春•武侯区校级期中)如图,点E、D分别在AB、AC上.若∠B=30°,∠C=50°,则∠1+∠2=   °.【变式1-2】(2022•哈尔滨)在△ABC中,AD为边BC上的高,∠ABC=30°,∠CAD=20°,则∠BAC是    度.【变式1-3】(2022•南京模拟)已知BD、CE是△ABC的高,直线BD、CE相交所成的角中有一个角为45°,则∠BAC等于    .【题型2 三角形内角和定理与角平分线、高线综合】【例2】(2022春•西湖区校级月考)如图,在△ABC中,∠BAC=60°,∠BCE=40°,AD平分∠BAC,CE⊥AB于点E,则∠ADB的度数为(  )A.100° B.90° C.80° D.50°【变式2-1】(2021秋•靖西市期末)△ABC中,∠C=50°,∠B=30°,AE平分∠BAC,点F为AE上一点,FD⊥BC于点D,则∠EFD的度数为(  )A.5 B.10 C.12 D.20【变式2-2】(2022春•鼓楼区校级期末)如图,在△ABC中,AD是高,AE是角平分线.(1)若∠B=32°,∠C=60°,求∠DAE的度数;(2)若∠C﹣∠B=18°,求∠DAE的度数.【变式2-3】(2022春•锡山区期中)已知:如图,△ABC中,AD⊥BC于点D,BE是∠ABC的平分线,若∠DAC=30°,∠BAC=80°.(1)求∠EBC的度数;(2)求∠AOB的度数.【题型3 三角形内角和定理与平行线的性质综合】【例3】(2022•高唐县二模)将一副直角三角尺按如图所示的方式摆放在一起,其中∠B=∠F=90°,∠A=45°,∠E=60°,点C在边DF上,AC,BC分别交DE于点G,H.若BC∥EF,则∠AGD的度数为(  )A.30° B.45° C.60° D.75°【变式3-1】(2022春•兴宁区校级期末)如图,在△ABG中,D为AG上一点,AB∥DC,点E是边AB上一点,连接ED,∠EBD=∠EDB,DF平分∠EDG,若∠GDC=72°,则∠BDF的度数为(  )A.50° B.40° C.45° D.36°【变式3-2】(2022春•泌阳县期末)如图,在△ABC中,AO平分∠BAC,BO⊥AO,O为垂足,OD∥AC,若∠ABO=40°,试求∠BOD的大小.(提示:延长AO交BC于点E)【变式3-3】(2022春•铜梁区校级期中)如图,AD是△ABE的角平分线,过点B作BC⊥AB交AD的延长线于点C,点F在AB上,连接EF交AD于点G.(1)若2∠1+∠EAB=180°,求证:EF∥BC;(2)若∠C=72°,∠AEB=78°,求∠CBE的度数.【题型4 三角形内角和定理与折叠性质综合】【例4】(2022春•锦江区校级期中)如图甲所示三角形纸片ABC中,∠B=∠C,将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为BD(如图乙).再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为EF(如图丙),则∠ABC的大小为    °.【变式4-2】(2021春•丹阳市期中)如图,△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE交于点O,将△ABC沿MN折叠,使点C与点O重合,若∠AOB=135°,则∠1+∠2 =   °.【变式4-3】(2022春•铁西区期末)有一张三角形纸片ABC,已知∠B=30°,∠C=50°,点D在边AB上,请在边BC上找一点E,将纸片沿直线DE折叠,点B落在点F处,若EF与三角形纸片ABC的边AC平行,则∠BED的度数为    .【变式4-4】(2022•巴彦县二模)在△ABC中,∠A=110°,点D在△ABC内,将射线BA沿直线BD翻折,将射线CA沿直线CD翻折,两射线交于点E,若∠BEC=150°,则∠BDC的度数为    .【题型5 三角形内角和定理与新定义问题综合】【例5】(2021秋•山亭区期末)定义:当三角形中一个内角α是另一个内角的两倍时,我们称此三角形为“倍角三角形”,其中α称为“倍角”,如果一个“倍角三角形”的一个内角为99°,那么倍角α的度数是    .【变式5-1】(2022春•大丰区校级月考)当三角形中一个内角â是另外一个内角á的12时,我们称此三角形为“友好三角形”,á为友好角.如果一个“友好三角形”中有一个内角为36°,那么这个“友好三角形”的“友好角á”的度数为    .【变式5-2】(2022春•安溪县期末)新定义:在△ABC中,若存在最大内角是最小内角度数的n倍(n为大于1的正整数),则称△ABC为“n倍角三角形”.例如,在△ABC中,若∠A=90°,∠B=60°,则∠C=30°,因为∠A最大,∠C最小,且∠A=3∠C,所以△ABC为“3倍角三角形”.(1)在△DEF中,若∠E=40°,∠F=60°,则△DEF为“   倍角三角形”.(2)如图,在△ABC中,∠C=36°,∠BAC、∠ABC的角平分线相交于点D,若△ABD为“6倍角三角形”,请求出∠ABD的度数.【变式5-3】(2021秋•福田区校级期末)我们定义:【概念理解】在一个三角形中,如果一个角的度数是另一个角度数的4倍,那么这样的三角形我们称之为“完美三角形”.如:三个内角分别为130°、40°、10°的三角形是“完美三角形”.【简单应用】如图1,∠MON=72°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与C、B重合点)(1)∠ABO=   °,△AOB   (填“是”或“不是”)“完美三角形”;(2)若∠ACB=90°,求证:△AOC是“完美三角形”;【应用拓展】如图2,点D在△ABC的边AB上,连接DC,作∠ADC的平分线交AC于点E,在DC上取一点F,使∠EFC+∠BDC=180°,∠DEF=∠B,若△BCD是“完美三角形”,求∠B的度数.【题型6 运用三角形内角和定理探究角的数量关系】【例6】(2021秋•青田县期末)如图,直线l∥线段BC,点A是直线l上一动点.在△ABC中,AD是△ABC的高线,AE是∠BAC的角平分线.(1)如图1,若∠ABC=65°,∠BAC=80°,求∠DAE的度数;(2)当点A在直线l上运动时,探究∠BAD,∠DAE,∠BAE之间的数量关系,并画出对应图形进行说明.【变式6-1】(2022春•顺德区期中)如图,在△ABC中,BO,CO是△ABC的内角平分线且BO,CO相交于点O.(1)若∠ACB=80°,∠ABC=40°,求∠BOC的度数;(2)若∠A=60°,求∠BOC的度数;(3)请你直接写出∠A与∠BOC满足的数量关系式,不需要说明理由.【变式6-2】(2022春•海门市期末)已知:△ABC,点D,E分别在边AC,AB上,连接BD,CE,BD与CE交于点O,∠BOC﹣∠BAC=54°.(1)如图1,当BD,CE都是△ABC的角平分线时,求∠BOC的度数;(2)如图2,当BD,CE都是△ABC的高时,求∠BOC的度数;(3)如图3,当∠ABD=2∠ACE时,探究∠BEO与∠CDO的数量关系,并说明理由.【变式6-3】(2022春•辉县市期末)小明在学习中遇到这样一个问题:如图1,在△ABC中,∠C>∠B,AE平分∠BAC,AD⊥BC于D.猜想∠B、∠C、∠EAD的数量关系.(1)小明阅读题目后,没有发现数量关系与解题思路,于是尝试代入∠B、∠C的值求∠EAD值,得到下面几组对应值:上表中a=   ,于是得到∠B、∠C、∠EAD的数量关系为    .(2)小明继续探究,在线段AE上任取一点P,过点P作PD⊥BC于点D,请尝试写出∠B、∠C、∠EPD之间的数量关系,并说明理由.(3)小明突发奇想,交换B、C两个字母位置,如图2,过EA的延长线是一点F作FD⊥BC交CB的延长线于D,当∠ABC=80°,∠C=24°时,∠F度数为    °.【知识点2 直角三角形的判定】直角三角形的判定:有两个角互余的三角形是直角三角形.【题型7 判断直角三角形】【例7】(2021春•历下区期中)在下列条件:①∠A+∠B=∠C,②∠A:∠B:∠C=5:3:2,③∠A=90°﹣∠B,④∠A=2∠B=3∠C中,能确定△ABC是直角三角形的条件有(  )A.1个 B.2个 C.3个 D.4个【变式7-1】(2022秋•旌阳区校级月考)在下列条件中(1)∠A+∠B=∠C;(2)∠A:∠B:∠C=1:2:3;(3)∠A=∠B=12∠C;(4)∠A=12∠B=13∠C中,能确定△ABC为直角三角形的条件有(  )A.1个 B.2个 C.3个 D.4个【变式7-2】(2021秋•谢家集区期中)如图,在△ABC中,∠B=30°,∠C=62°,AE平分∠BAC.(1)求∠BAE;(2)若AD⊥BC于点D,∠ADF=74°,证明:△ADF是直角三角形.【变式7-3】(2022春•崇川区期末)定义:如果三角形的两个内角α与β满足α+2β=100°,那么我们称这样的三角形为“奇妙三角形”.(1)如图1,△ABC中,∠ACB=80°,BD平分∠ABC.求证:△ABD为“奇妙三角形”(2)若△ABC为“奇妙三角形”,且∠C=80°.求证:△ABC是直角三角形;(3)如图2,△ABC中,BD平分∠ABC,若△ABD为“奇妙三角形”,且∠A=40°,直接写出∠C的度数.【知识点3 直角三角形的性质】直角三角形的性质:直角三角形两个内角互余.【题型8 运用直角三角形两锐角互余的性质倒角】【例8】(2022秋•宁晋县期中)如图,在△ABC中,∠BAC=90°,AC≠AB,AD是斜边BC上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是(  )A.3个 B.4个 C.5个 D.6个【变式8-1】(2022•碑林区校级模拟)如图,已知Rt△ABC和Rt△DEF,∠BAC=∠EDF=90°,点F、A、D、C共线,AB、EF相交于点M,且EF⊥BC,则图中与∠E相等的角有(  )个.A.5 B.4 C.3 D.2【变式8-2】(2022春•邓州市期末)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,AD、BE相交于点F.(1)若∠CAD=36°,求∠AEF的度数;(2)试说明:∠AEF=∠AFE.【变式8-3】(2022春•米东区期末)如图1,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC.(1)求证:∠ACE=∠ABC;(2)求证:∠ECD+∠EBC=∠BEC;(3)求证:∠CEF=∠CFE. ∠B/度1030302020∠C/度7070606080∠EAD/度30a152030专题13.2 三角形内角和定理的运用【八大题型】【沪科版】TOC \o "1-3" \t "正文,1" \hTOC \o "1-1" \h \u  HYPERLINK \l "_Toc7550" 【题型1 运用三角形内角和定理直接求角的度数】  PAGEREF _Toc7550 \h 1 HYPERLINK \l "_Toc2836" 【题型2 三角形内角和定理与角平分线、高线综合】  PAGEREF _Toc2836 \h 3 HYPERLINK \l "_Toc26832" 【题型3 三角形内角和定理与平行线的性质综合】  PAGEREF _Toc26832 \h 7 HYPERLINK \l "_Toc12177" 【题型4 三角形内角和定理与折叠性质综合】  PAGEREF _Toc12177 \h 10 HYPERLINK \l "_Toc286" 【题型5 三角形内角和定理与新定义问题综合】  PAGEREF _Toc286 \h 14 HYPERLINK \l "_Toc2555" 【题型6 运用三角形内角和定理探究角的数量关系】  PAGEREF _Toc2555 \h 18 HYPERLINK \l "_Toc27146" 【题型7 判断直角三角形】  PAGEREF _Toc27146 \h 24 HYPERLINK \l "_Toc16473" 【题型8 运用直角三角形两锐角互余的性质倒角】  PAGEREF _Toc16473 \h 28【知识点1 三角形的内角及内角和定理】三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.三角形内角和定理:三角形内角和是180°.【题型1 运用三角形内角和定理直接求角的度数】【例1】(2021秋•涡阳县期末)在△ABC中,已知∠B=∠A+10°,∠C=∠B+25°,求∠A的度数.【分析】将第一个等式代入第二等式用∠A表示出∠C,再根据三角形的内角和等于180°列方程求出∠A,然后求解即可.【解答】解:∵∠B=∠A+10°,∠C=∠B+25°,∴∠C=∠A+10°+25°=∠A+35°,由三角形内角和定理得,∠A+∠B+∠C=180°,所以,∠A+∠A+10°+∠A+35°=180°,解得∠A=45°.【变式1-1】(2022春•武侯区校级期中)如图,点E、D分别在AB、AC上.若∠B=30°,∠C=50°,则∠1+∠2=   °.【分析】根据三角形的内角和定理列式整理可得∠1+∠2=∠B+∠C,从而可求解.【解答】解:∵∠1+∠2+∠A=180°,∠B+∠C+∠A=180°,∴∠1+∠2=∠B+∠C,∵∠B=30°,∠C=50°,∴∠1+∠2=∠B+∠C=30°+50°=80°.故答案为:80°.【变式1-2】(2022•哈尔滨)在△ABC中,AD为边BC上的高,∠ABC=30°,∠CAD=20°,则∠BAC是    度.【分析】分两种情况:△ABC为锐角三角形或钝角三角形,然后利用三角形内角和定理即可作答.【解答】解:当△ABC为锐角三角形时,如图,∠BAD=180°﹣∠B﹣∠ADB=180°﹣30°﹣90°=60°,∠BAC=∠BAD+∠CAD=60°+20°=80°;当△ABC为钝角三角形时,如图,∠BAD=180°﹣∠B﹣∠ADB=180°﹣30°﹣90°=60°,∠BAC=∠BAD﹣∠CAD=60°﹣20°=40°.综上所述,∠BAC=80°或40°.故答案为:80或40.【变式1-3】(2022•南京模拟)已知BD、CE是△ABC的高,直线BD、CE相交所成的角中有一个角为45°,则∠BAC等于    .【分析】根据三角形的内角和定理.分∠BAC与这个45°的角在一个四边形内,及∠BAC与这个45°的角不在一个四边形内两种情况讨论.【解答】解:若∠BAC与这个45°的角在一个四边形BCDE内,因为BD、CE是△ABC的高,设BD的延长线交CE的延长线于O.∴∠AEC=∠ADB=90°,∵∠O=45°,∴∠DAE=180°﹣45°=135°∴∠BAC=∠DAE=135°;若∠BAC与这个45°的角不在一个四边形BCDE内,因为BD、CE是△ABC的高,如图:∠BAC=180°﹣(180°﹣45°)=45°,所以∠BAC等于45度.若∠ACB是钝角,∠A是锐角,易知∠ABD=40°,∠A=45°综上所述,∠A的值为45°或135°.故答案为:45°或135°.【题型2 三角形内角和定理与角平分线、高线综合】【例2】(2022春•西湖区校级月考)如图,在△ABC中,∠BAC=60°,∠BCE=40°,AD平分∠BAC,CE⊥AB于点E,则∠ADB的度数为(  )A.100° B.90° C.80° D.50°【分析】根据三角形内角和定理以及角平分线的定义求出∠B与∠BAD的度数即可求解.【解答】解:∵CE⊥AB,∴∠BEC=90°,∵∠BCE=40°,∴∠B=50°,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=12∠BAC=30°,∴∠ADB=180°﹣∠B﹣∠BAD=180°﹣50°﹣30°=100°.故选:A.【变式2-1】(2021秋•靖西市期末)△ABC中,∠C=50°,∠B=30°,AE平分∠BAC,点F为AE上一点,FD⊥BC于点D,则∠EFD的度数为(  )A.5 B.10 C.12 D.20【分析】根据三角形的内角和为180°即可得出结论.【解答】解:∵∠C=50°,∠B=30°,∴∠BAC=180°﹣∠C﹣∠A=180°﹣50°﹣30°=100°,∵AE是∠BAC的平分线,∴∠BAE=50°,∴∠FED=50°+30°=80°,又∵DF⊥BC,∴∠FED+∠EFD=90°,∴∠EFD=90°﹣80°=10°,故选:B.【变式2-2】(2022春•鼓楼区校级期末)如图,在△ABC中,AD是高,AE是角平分线.(1)若∠B=32°,∠C=60°,求∠DAE的度数;(2)若∠C﹣∠B=18°,求∠DAE的度数.【分析】(1)根据三角形内角和定理求出∠BAC,根据角平分线的定义求出∠EAC,根据垂直求出∠ADC=90°,根据直角三角形两锐角互余求出∠DAC,再求出答案即可;(2)求出∠C=18°+∠B,根据三角形内角和定理求出∠BAC,根据角平分线的定义求出∠EAC,根据垂直求出∠ADC=90°,根据直角三角形两锐角互余求出∠DAC,再求出答案即可.【解答】解:(1)∵∠B=32°,∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=88°,∵AE是角平分线,∴∠EAC=12∠BAC=44°,∵AD是高,∴∠AC=90°,∵∠C=60°,∴∠DAC=90°﹣∠C=30°,∴∠DAE=∠EAC﹣∠DAC=44°﹣30°=14°;(2)∵∠C﹣∠B=18°,∴∠C=18°+∠B,∴∠BAC=180°﹣∠B﹣∠C=180°﹣∠B﹣(18°+∠B)=162°﹣2∠B,∵AE是角平分线,∴∠EAC=12∠BAC=81°﹣∠B,∵AD是高,∴∠AC=90°,∵∠C=18°+∠B,∴∠DAC=90°﹣∠C=90°﹣(18°+∠B)=72°﹣∠B,∴∠DAE=∠EAC﹣∠DAC=(81°﹣∠B)﹣(72°﹣∠B)=9°.【变式2-3】(2022春•锡山区期中)已知:如图,△ABC中,AD⊥BC于点D,BE是∠ABC的平分线,若∠DAC=30°,∠BAC=80°.(1)求∠EBC的度数;(2)求∠AOB的度数.【分析】(1)由直角三角形的性质可求解∠C=60°,利用三角形的内角和定理可求解∠ABC=40°,再根据角平分线的定义可求解;(2)由∠BAD=∠BAC﹣∠DAC可求解∠BAD=50°,由角平分线的定义可求解∠ABO=∠EBC=20°,由三角形的内角和定理可求解.【解答】解:(1)∵AD⊥BC,∴∠ADC=90°,∴△ADC是直角三角形,∵∠DAC=30°,∴∠C=90°﹣∠DAC=60°,∵∠BAC=80°,∴∠ABC=180°﹣∠BAC﹣∠C=40°,∵BE是△ABC的平分线,∴∠EBC=12∠ABC=20°;(2)∵∠BAC=80°,∠DAC=30°,∴∠BAD=∠BAC﹣∠DAC=50°,由(1)可知∠EBC=20°,∵BE是∠ABC的平分线,∴∠ABO=∠EBC=20°,在△AOB中,∠AOB=180°﹣∠BAO﹣∠ABO=110°.【题型3 三角形内角和定理与平行线的性质综合】【例3】(2022•高唐县二模)将一副直角三角尺按如图所示的方式摆放在一起,其中∠B=∠F=90°,∠A=45°,∠E=60°,点C在边DF上,AC,BC分别交DE于点G,H.若BC∥EF,则∠AGD的度数为(  )A.30° B.45° C.60° D.75°【分析】在△ABC中,利用三角形内角和定理可求出∠ACB(即∠HCG)的度数,由BC∥EF,利用“两直线平行,同位角相等”可得出∠GHC的度数,在△HCG中,利用三角形内角和定理可求出∠HGC的度数,再结合对顶角相等可得出∠AGD的度数.【解答】解:∵∠B=90°,∠A=45°,∴∠ACB=180°﹣∠B﹣∠A=180°﹣90°﹣45°=45°,即∠HCG=45°.∵BC∥EF,∴∠GHC=∠E=60°,∴∠HGC=180°﹣∠GHC﹣∠HCG=180°﹣60°﹣45°=75°,∴∠AGD=∠HGC=75°.故选:D.【变式3-1】(2022春•兴宁区校级期末)如图,在△ABG中,D为AG上一点,AB∥DC,点E是边AB上一点,连接ED,∠EBD=∠EDB,DF平分∠EDG,若∠GDC=72°,则∠BDF的度数为(  )A.50° B.40° C.45° D.36°【分析】根据平行线的性质可得∠EBD=∠BDC,根据角平分线的定义可得∠EDB=∠BDC,设∠EDB=∠BDC=x°,表示出∠GDE,根据角平分线的性质可得∠EDF,再根据∠BDF=∠EDF﹣∠BDE,求解即可.【解答】解:∵AB∥DC,∴∠EBD=∠BDC,∵∠EBD=∠EDB,∴∠EDB=∠BDC,设∠EDB=∠BDC=x°,∵∠GDC=72°,∴∠GDE=2x°+72°,∵DF平分∠EDG,∴∠EDF=12∠EDG=x°+36°,∴∠BDF=∠EDF﹣∠BDE=x°+36°﹣x°=36°,故选:D.【变式3-2】(2022春•泌阳县期末)如图,在△ABC中,AO平分∠BAC,BO⊥AO,O为垂足,OD∥AC,若∠ABO=40°,试求∠BOD的大小.(提示:延长AO交BC于点E)【分析】延长AO交BC于点E,根据垂直的定义得到∠AOB=∠BOE=90°,根据三角形内角和得出∠BAO=50°,根据角平分线的定义得到∠EAC=50°,根据平行线的性质得到∠EOD=50°,根据角的和差即可得解.【解答】解:延长AO交BC于点E,∵BO⊥AO,∴∠AOB=∠BOE=90°,∵∠ABO=40°,∴∠BAO=180°﹣∠ABO﹣∠AOB=50°,∵AO平分∠BAC,∴∠EAC=∠BAO=50°,∵OD∥AC,∴∠EOD=∠EAC=50°,∴∠BOD=∠BOE+∠EOD=140°.【变式3-3】(2022春•铜梁区校级期中)如图,AD是△ABE的角平分线,过点B作BC⊥AB交AD的延长线于点C,点F在AB上,连接EF交AD于点G.(1)若2∠1+∠EAB=180°,求证:EF∥BC;(2)若∠C=72°,∠AEB=78°,求∠CBE的度数.【分析】(1)先根据垂直等于得到∠ABC=90°,则∠C+∠BAC=90°,再证明2∠C+∠EAB=180°,加上2∠1+∠EAB=180°,则∠1=∠C,然后根据平行线的判定方法得到结论;(2)先根据三角形内角和定理可计算出计算出∠BAC=18°,则∠EAD=18°,根据三角形内角和定理得到∠EAD+∠AED=∠C+∠CBE,即18°+78°=72°+∠CBE,从而可求出∠CBE的度数.【解答】(1)证明:∵BC⊥AB,∴∠ABC=90°,∴∠C+∠BAC=90°,∵AD是△ABE的角平分线,∴∠BAC=12∠EAB,∴∠C+12∠EAB=90°,即2∠C+∠EAB=180°,∵2∠1+∠EAB=180°,∴∠1=∠C,∴EF∥BC;(2)解:∵∠ABC=90°,∠C=72°,∴∠BAC=18°,∴∠EAD=∠BAC=18°,∵∠ADE=∠BDC,∴∠EAD+∠AED=∠C+∠CBE,即18°+78°=72°+∠CBE,∴∠CBE=24°.【题型4 三角形内角和定理与折叠性质综合】【例4】(2022春•锦江区校级期中)如图甲所示三角形纸片ABC中,∠B=∠C,将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为BD(如图乙).再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为EF(如图丙),则∠ABC的大小为    °.【分析】设∠A=x,根据翻折不变性可知∠A=∠EDA=x,∠C=∠BED=∠A+∠EDA=2x,利用三角形内角和定理构建方程即可解决问题.【解答】解:设∠A=x,根据翻折不变性可知∠A=∠EDA=x,∠C=∠DEB=∠A+∠EDA=2x,∵AB=AC,∴∠ABC=∠C=2x,∵∠A+∠ABC+∠C=180°,∴5x=180°,∴x=36°,∴∠ABC=72°.故答案为:72.【变式4-2】(2021春•丹阳市期中)如图,△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE交于点O,将△ABC沿MN折叠,使点C与点O重合,若∠AOB=135°,则∠1+∠2 =   °.【分析】根据折叠的性质得到对应角相等,推出∠1+∠2=2∠MON,根据垂直的定义得到∠ODN=∠OEM=90°,利用平角的定义得到∠BOD+∠DON+∠MON+∠EOM=180°,即可求出结果.【解答】解:由折叠性质可知,∠OMN=∠CMN,∠ONM=∠CNM,∠MON=∠MCN,∴∠1=180°﹣2∠CMN,∠2=180°﹣2∠CNM,∴∠1+∠2=2(180°﹣∠CMN﹣∠CNM)=2∠MCN=2∠MON,∵∠AOB=135°,∴∠BOD=45°,∵AD⊥BC,BE⊥AC,∴∠ODN=∠OEM=90°,∴∠DON=90°﹣∠2,∠EOM=90°﹣∠1,∵∠BOD+∠DON+∠MON+∠EOM=180°,即45°+90°﹣∠2+90°﹣∠1+12(∠1+∠2)=180°,∴12(∠1+∠2)=45°,∴∠1+∠2=90°,故答案为:90.【变式4-3】(2022春•铁西区期末)有一张三角形纸片ABC,已知∠B=30°,∠C=50°,点D在边AB上,请在边BC上找一点E,将纸片沿直线DE折叠,点B落在点F处,若EF与三角形纸片ABC的边AC平行,则∠BED的度数为    .【分析】分两种情况:①当点F在AB的上方时,②当点F在BC的下方时,根据折叠性质、平行线的性质即可解决问题.【解答】解:①当点F在AB的上方时,如图:∵AC∥EF,∠C=50°,∴∠BEF=∠C=50°,∴∠BED=∠FED=12∠BEF=12×50°=25°;②当点F在BC的下方时,如图:∵AC∥EF,∠C=50°,∴∠CEF=∠C=50°,∵∠F=∠B=30°,∴∠BGD=50°+30°=80°,∴∠BDG=180°﹣80°﹣30°=70°,∴∠BDE=12∠BDG=12×70°=35°,∴∠BED=115°;综上所述,∠BED的度数为25°或115°.故答案为:25°或115°.【变式4-4】(2022•巴彦县二模)在△ABC中,∠A=110°,点D在△ABC内,将射线BA沿直线BD翻折,将射线CA沿直线CD翻折,两射线交于点E,若∠BEC=150°,则∠BDC的度数为    .【分析】当点E在△ABC外时,根据四边形的内角和求出∠ABE+∠ACE,再由折叠性质求得∠ABD+∠ACD,由三角形内角和求得∠ABC+∠ACB,便可求得∠CBD+∠BCD,最后由三角形内角和求得∠BDC;当点E在△ABC内时,根据三角形内角和求出结果便可.【解答】解:当点E在△ABC外时,如图,∵∠A=110°,∠BEC=150°,∴∠ABE+∠ACE=360°﹣110°﹣150°=100°,由折叠性质知,∠ABD=∠EBD=12∠ABE,∠ACD=∠ECD=12∠ACE,∴∠ABD+∠ACD=12×100°=50°,∵∠ABC+∠ACB=180°﹣∠A=70°,∴∠CBD+∠BCD=70°﹣50°=20°,∴∠BDC=180°﹣20°=160°,当点E在△ABC内时,如图,∵∠A=110°,∠BEC=150°,∴∠ABC+∠ACB=180°﹣110°=70°,∠EBC+∠ECB=180°﹣150°=30°,∴∠ABE+∠ACE==70°﹣30°=40°,由折叠性质知,∠DBE=12∠ABE,∠DCE=12∠ACE,∴∠DBE+∠DCE=12(∠ABE+∠ACE)=20°,∴∠DBC+∠DCB=∠DBE+∠DCE+∠EBC+∠ECB=50°,∴∠BDC=180°﹣(∠DBC+∠DCB)130°,故答案为:160°或130°.【题型5 三角形内角和定理与新定义问题综合】【例5】(2021秋•山亭区期末)定义:当三角形中一个内角α是另一个内角的两倍时,我们称此三角形为“倍角三角形”,其中α称为“倍角”,如果一个“倍角三角形”的一个内角为99°,那么倍角α的度数是    .【分析】根据三角形内角和定理以及分类讨论的思想解决本题.【解答】解:设这个“倍角”三角形的三个内角分别为α、β、γ,其中α=2β,则可能出现以下几种情况:①当α=99°时,则β=49.5°;②当β=99°时,则α=198°,该种情况不存在;③当γ=99°时,则α+β+γ=2β+β+99°=180°,故β=27°,α=54°.综上:α=99°或54°.故答案为:99°或54°.【变式5-1】(2022春•大丰区校级月考)当三角形中一个内角â是另外一个内角á的12时,我们称此三角形为“友好三角形”,á为友好角.如果一个“友好三角形”中有一个内角为36°,那么这个“友好三角形”的“友好角á”的度数为    .【分析】利用“友好三角形”的定义讨论:当三角形的另一个内角为72°时,可确定“友好角á”的度数为72°;当三角形的另一个内角为18°时,可确定“友好角á”的度数为36°;当三角形的另两个内角为x,2x时,利用三角形内角和求出x=48°,所以2x=96°,从而得到“友好角á”的度数.【解答】解:∵一个“友好三角形”中有一个内角为36°,∴当三角形的另一个内角为72°时,这个“友好三角形”的“友好角á”的度数为72°;当三角形的另一个内角为18°时,这个“友好三角形”的“友好角á”的度数为36°;当三角形的另两个内角为x,2x时,则x+2x+36°=180°,解得x=48°,2x=96°,这个“友好三角形”的“友好角á”的度数为96°;综上所述,这个“友好三角形”的“友好角á”的度数为36°或72°或96°.故答案为:36°或72°或96°.【变式5-2】(2022春•安溪县期末)新定义:在△ABC中,若存在最大内角是最小内角度数的n倍(n为大于1的正整数),则称△ABC为“n倍角三角形”.例如,在△ABC中,若∠A=90°,∠B=60°,则∠C=30°,因为∠A最大,∠C最小,且∠A=3∠C,所以△ABC为“3倍角三角形”.(1)在△DEF中,若∠E=40°,∠F=60°,则△DEF为“   倍角三角形”.(2)如图,在△ABC中,∠C=36°,∠BAC、∠ABC的角平分线相交于点D,若△ABD为“6倍角三角形”,请求出∠ABD的度数.【分析】(1)根据三角形内角和定理求出∠D,根据n倍角三角形的定义判断;(2)根据角平分线的定义、三角形内角和定理求出∠ADB,n倍角三角形的定义分情况讨论计算,得到答案.【解答】解:(1)在△DEF中,∠E=40°,∠F=60°,则∠D=180°﹣∠E﹣∠F=80°,∴∠D=2∠E,∴△DEF为“2倍角三角形”,故答案为:2;(2)∵∠C=36°,∴∠BAC+∠ABC=180°﹣36°=144°,∵∠BAC、∠ABC的角平分线相交于点D,∴∠DAB=12∠BAC,∠DBA=12∠ABC,∴∠DAB+∠DBA=12×144°=72°,∴∠ADB=180°﹣72°=108°,∵△ABD为“6倍角三角形”,∴∠ADB=6∠ABD或∠ADB=6∠BAD,当∠ADB=6∠ABD时,∠ABD=18°,当∠ADB=6∠BAD时,∠BAD=18°,则∠ABD=180°﹣108°﹣18°=54°,综上所述,∠ABD的度数为18°或54°.【变式5-3】(2021秋•福田区校级期末)我们定义:【概念理解】在一个三角形中,如果一个角的度数是另一个角度数的4倍,那么这样的三角形我们称之为“完美三角形”.如:三个内角分别为130°、40°、10°的三角形是“完美三角形”.【简单应用】如图1,∠MON=72°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与C、B重合点)(1)∠ABO=   °,△AOB   (填“是”或“不是”)“完美三角形”;(2)若∠ACB=90°,求证:△AOC是“完美三角形”;【应用拓展】如图2,点D在△ABC的边AB上,连接DC,作∠ADC的平分线交AC于点E,在DC上取一点F,使∠EFC+∠BDC=180°,∠DEF=∠B,若△BCD是“完美三角形”,求∠B的度数.【概念理解】在一个三角形中,如果一个角的度数是另一个角度数的4倍,那么这样的三角形我们称之为“完美三角形”.如:三个内角分别为130°、40°、10°的三角形是“完美三角形”.【简单应用】如图1,∠MON=72°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与C、B重合点)(1)∠ABO= 18 °,△AOB 是 (填“是”或“不是”)“完美三角形”;(2)若∠ACB=90°,求证:△AOC是“完美三角形”;【应用拓展】如图2,点D在△ABC的边AB上,连接DC,作∠ADC的平分线交AC于点E,在DC上取一点F,使∠EFC+∠BDC=180°,∠DEF=∠B,若△BCD是“完美三角形”,求∠B的度数.【分析】(1)根据垂直的定义、三角形内角和定理求出∠ABO的度数,根据“完美三角形”的概念判断;(2)根据“完美三角形”的概念证明即可;应用拓展:根据比较的性质得到∠EFC=∠ADC,根据平行线的性质得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根据角平分线的定义得到∠ADE=∠CDE,求得∠B=∠BCD,根据“完美三角形”的定义求解即可.【解答】解:(1)∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°﹣∠MON=90°﹣72°=18°,∵∠MON=4∠ABO,∴△AOB为“完美三角形”,故答案为:18;是;(2)证明:∵∠MON=72°,∠ACB=90°,∠ACB=∠OAC+∠MON,∴∠OAC=90°﹣72°=18°,∵∠AOB=72°=4×18°=4∠OAC,∴△AOC是“完美三角形”;应用拓展:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠CDE=∠BCD,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠B=∠BCD,∵△BCD是“完美三角形”,∴∠BDC=4∠B,或∠B=4∠BDC,∵∠BDC+∠BCD+∠B=180°,∴∠B=30°或∠B=80°.【题型6 运用三角形内角和定理探究角的数量关系】【例6】(2021秋•青田县期末)如图,直线l∥线段BC,点A是直线l上一动点.在△ABC中,AD是△ABC的高线,AE是∠BAC的角平分线.(1)如图1,若∠ABC=65°,∠BAC=80°,求∠DAE的度数;(2)当点A在直线l上运动时,探究∠BAD,∠DAE,∠BAE之间的数量关系,并画出对应图形进行说明.【分析】(1)根据角平分线的定义得∠BAE=12∠BAC=40°.而∠BAD=90°﹣∠ABD=25°,利用角的和差关系可得答案;(2)根据高在形内和形外进行分类,再根据AB,AC,AD为位置进行讨论.【解答】解:(1)∵AE是∠BAC的角平分线,∴∠BAE=12∠BAC=40°.∵AD是△ABC的高线,∴∠BDA=90°,∴∠BAD=90°﹣∠ABD=25°,∴∠DAE=∠BAE﹣∠BAD=40°﹣25°=15°;(2)如图1,∠BAD+∠BAE=∠DAE;如图2,∠BAD+∠DAE=∠BAE;如图3,∠BAE+∠DAE=∠BAD;如图4,∠BAE+∠DAE=∠BAD.【变式6-1】(2022春•顺德区期中)如图,在△ABC中,BO,CO是△ABC的内角平分线且BO,CO相交于点O.(1)若∠ACB=80°,∠ABC=40°,求∠BOC的度数;(2)若∠A=60°,求∠BOC的度数;(3)请你直接写出∠A与∠BOC满足的数量关系式,不需要说明理由.【分析】(1)由角平分线的定义可得∠CBO=40°,∠BCO=20°,由三角形的内角和定理即可求解;(2)由三角形的内角和定理可得∠ABC+∠ACB=120°,再由角平分线的定义得∠CBO=12∠ABC,∠BCO=12∠ACB,从而可求得∠CBO+∠BCO=60°,即可求∠BOC的度数;(3)仿照(2)的过程进行求解即可.【解答】解:(1)∵BO平分∠ABC,CO平分∠ACB,∠ACB=80°,∠ABC=40°,∴∠CBO=12∠ABC=20°,∠BCO=12∠ACB=40°,∴∠BOC=180°﹣∠CBO﹣∠BCO=120°;(2)∵∠A=60°,∴∠ABC+∠ACB=180°﹣∠A=120°,∵BO平分∠ABC,CO平分∠ACB,∴∠CBO=12∠ABC,∠BCO=12∠ACB,∴∠CBO+∠BCO=12(∠ABC+∠ACB)=60°,∴∠BOC=180°﹣(∠CBO+∠BCO)=120°;(3)由题意得:∠ABC+∠ACB=180°﹣∠A,∵BO平分∠ABC,CO平分∠ACB,∴∠CBO=12∠ABC,∠BCO=12∠ACB,∴∠CBO+∠BCO=12(∠ABC+∠ACB)=90°−12∠A,∴∠BOC=180°﹣(∠CBO+∠BCO)=90°+12∠A,即∠BOC=90°+12∠A.【变式6-2】(2022春•海门市期末)已知:△ABC,点D,E分别在边AC,AB上,连接BD,CE,BD与CE交于点O,∠BOC﹣∠BAC=54°.(1)如图1,当BD,CE都是△ABC的角平分线时,求∠BOC的度数;(2)如图2,当BD,CE都是△ABC的高时,求∠BOC的度数;(3)如图3,当∠ABD=2∠ACE时,探究∠BEO与∠CDO的数量关系,并说明理由.【分析】(1)根据角平分线的定义以及三角形内角和定理进行计算即可;(2)根据高的定义,三角形内角和定理以及图形中角之间的和差关系进行计算即可;(3)利用三角形内角和定理,四边形的内角和以及角之间的和差关系进行计算即可.【解答】解:(1)∵BD,CE都是△ABC的角平分线,∴∠DBC=∠ABD=12∠ABC,∠ECB=∠ACE=12∠ACB,∴∠DBC+∠ECB=12(∠ABC+∠ACB)=12(180°﹣∠BAC)=90°−12∠BAC,∴∠BOC=180°﹣(∠DBC+∠ECB)=180°﹣(90°−12∠BAC)=90°+12∠BAC,又∵∠BOC﹣∠BAC=54°,即90°+12∠BAC﹣∠BAC=54°,∴∠BAC=72°,∴∠BOC=90°+12∠BAC=90°+36°=126°;(2)∵BD,CE都是△ABC的高,∴∠ADB=∠AEC=90°,∵∠A+∠ADB+∠DOE+∠AEC=360°,∴∠A+90°+∠DOE+90°=360°,∴∠A=180°﹣∠DOE,∵∠DOE=∠BOC,∴∠A=180°﹣∠BOC,∵∠BOC﹣∠A=54°,∴∠BOC﹣(180°﹣∠BOC)=54°,∴∠BOC=117°.(3)∠ODC﹣∠BEO=18°,理由如下:∵∠BEO=∠A+∠ACE,∴∠BOC=∠BEO+∠ABD=∠A+∠ACE+∠ABD,∴∠BOC﹣∠A=∠ACE+∠ABD.∵∠BOC﹣∠A=54°,∴∠ABD=2∠ACE,∴54°=∠ACE+2∠ACE,∴∠ACE=18°,∴∠ABD=2×18°=36°,∵∠BOC=∠ODC+∠DCO=∠BEO+∠ABD,∴∠BEO+36°=∠ODC+18°,∴∠ODC﹣∠BEO=18°.【变式6-3】(2022春•辉县市期末)小明在学习中遇到这样一个问题:如图1,在△ABC中,∠C>∠B,AE平分∠BAC,AD⊥BC于D.猜想∠B、∠C、∠EAD的数量关系.(1)小明阅读题目后,没有发现数量关系与解题思路,于是尝试代入∠B、∠C的值求∠EAD值,得到下面几组对应值:上表中a=   ,于是得到∠B、∠C、∠EAD的数量关系为    .(2)小明继续探究,在线段AE上任取一点P,过点P作PD⊥BC于点D,请尝试写出∠B、∠C、∠EPD之间的数量关系,并说明理由.(3)小明突发奇想,交换B、C两个字母位置,如图2,过EA的延长线是一点F作FD⊥BC交CB的延长线于D,当∠ABC=80°,∠C=24°时,∠F度数为    °.【分析】(1)求出∠BAE和∠BAD的大小即可得到∠EAD的值,再通过找规律的形式得出三者的关系,(2)分别用∠B和∠C表示出∠BAE和∠BAD,再由∠EAD=∠BAE和﹣BAD即可得出答案,(3)分析同(2).【解答】解:(1)∵∠B=30°,∠C=70°,∴Rt△ABD中,∠BAD=180°﹣∠B﹣∠BDA=180°﹣30°﹣90°=60°,∵AE平分∠BAC,∴∠BAE=12∠BAC=12(180°﹣∠B﹣∠C)=12(180°﹣30°﹣70°)=40°,∴∠EAD=∠BAD﹣∠BAE=60°﹣40°=20°,∴a=20,故答案为:20;2∠EAD=∠C﹣∠B.(2)如图,过点A作AF⊥BC于F,∵PD⊥BC,AF⊥BC,∴PD∥AF,∴∠EPD=∠EAF,∵△ABC内角和为180°,∴∠BAC=180°﹣∠B﹣∠C,∵AE平分∠BAC,∴∠BAE=12∠BAC=90°−∠B+∠C2,同时∠BAF=90°﹣∠B,∴可得出∠EAF=∠BAF﹣∠BAE=∠C−∠B2=∠EPD,综上所述,∠EPD=∠C−∠B2;(3)同理(2),依旧可得∠EFD=∠C−∠B2=28°,故答案为:28.【知识点2 直角三角形的判定】直角三角形的判定:有两个角互余的三角形是直角三角形.【题型7 判断直角三角形】【例7】(2021春•历下区期中)在下列条件:①∠A+∠B=∠C,②∠A:∠B:∠C=5:3:2,③∠A=90°﹣∠B,④∠A=2∠B=3∠C中,能确定△ABC是直角三角形的条件有(  )A.1个 B.2个 C.3个 D.4个【分析】根据直角三角形的判定对各个条件进行分析,即可得到答案.【解答】解:①∵∠A+∠B=∠C,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形;②∵∠A:∠B:∠C=5:3:2,设∠A=5x,则∠B=3x,∠C=2x,∴5x+2x+3x=180°,解得:x=18°,∴∠A=18°×5=90°,∴△ABC是直角三角形;③∵∠A=90°﹣∠B,∴∠A+∠B=90°,∴∠C=180°﹣90°=90°,∴△ABC是直角三角形;④∵3∠C=2∠B=∠A,∴∠A+∠B+∠C=12∠A+13∠A+∠A=180°,∴∠A=(108011)°,∴△ABC为钝角三角形.∴能确定△ABC是直角三角形的有①②③共3个,故选:C.【变式7-1】(2022秋•旌阳区校级月考)在下列条件中(1)∠A+∠B=∠C;(2)∠A:∠B:∠C=1:2:3;(3)∠A=∠B=12∠C;(4)∠A=12∠B=13∠C中,能确定△ABC为直角三角形的条件有(  )A.1个 B.2个 C.3个 D.4个【分析】(1)根据三角形内角和定理列式计算,根据直角三角形的概念判定即可.【解答】解:(1)∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,解得:∠C=90°,∴△ABC是直角三角形;(2)设∠A=x,则∠B=2x,∠C=3x,由三角形内角和定理得:x+2x+3x=180°,解得:x=30°,∴∠C=30°×3=90°,∴△ABC是直角三角形;(3)∵∠A=∠B=12∠C,∠A+∠B+∠C=180°∴12∠C+12∠C+∠C=180°,解得:∠C=90°,∴△ABC是直角三角形;(4)∵∠A=12∠B=13∠C,∴∠C=3∠A,∠B=2∠A,∴∠A+∠B+∠C=3∠A+2∠A+∠A=180°,解得:∠A=30°,∴∠C=3∠A=90°,∴△ABC为直角三角形.所以能确定△ABC是直角三角形的有共4个,故选:D.【变式7-2】(2021秋•谢家集区期中)如图,在△ABC中,∠B=30°,∠C=62°,AE平分∠BAC.(1)求∠BAE;(2)若AD⊥BC于点D,∠ADF=74°,证明:△ADF是直角三角形.【分析】(1)在△ABC中,∠B=30°,∠C=62°,根据三角形内角和定理,可求得∠BAC的度数,由AE平分∠BAC,根据角平分线的定义,可求得∠BAE的度数;(2)由AD⊥BC,根据直角三角形的性质,可求得∠BAD的度数,继而求得∠DAE的度数,则可求得∠ADF的度数.【解答】(1)解:∵∠B=30°,∠C=62°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣30°﹣62°=88°,∵AE平分∠BAC,∴∠BAE=12∠BAC=12×88°=44°;(2)证明:∵AD⊥BC;∴∠BAD=90°﹣∠B=90°﹣30°=60°,∴∠EAD=∠BAD﹣∠BAE=60°﹣44°=16°,∵∠ADF=74°,∴∠ADF+∠EAD=74°+16°=90°,∴∠AFD=90°,∴△ADF是直角三角形.【变式7-3】(2022春•崇川区期末)定义:如果三角形的两个内角α与β满足α+2β=100°,那么我们称这样的三角形为“奇妙三角形”.(1)如图1,△ABC中,∠ACB=80°,BD平分∠ABC.求证:△ABD为“奇妙三角形”(2)若△ABC为“奇妙三角形”,且∠C=80°.求证:△ABC是直角三角形;(3)如图2,△ABC中,BD平分∠ABC,若△ABD为“奇妙三角形”,且∠A=40°,直接写出∠C的度数.【分析】(1)根据“奇妙三角形”的定义,在△ABD中,∠A+2∠ABD=100°,即证明△ABD为“奇妙三角形”.(2)由三角形的内角和知,A+∠B=100°,由△ABC为“奇妙三角形”得出∠C+2∠B=100°或∠C+2∠A=100°两种情况,计算得∠B=90°或∠A=90°,从而证明△ABC是直角三角形.(3)由三角形的内角和知,∠ADB+∠ABD=140,由△ABC为“奇妙三角形得出∠A+2∠ABD=100°或2∠A+∠ABD=100°两种情况,求得∠C=80°或100°.【解答】(1)证明:∵BD平分∠ABC,∴∠ABC=2∠ABD.在△ABC中,∵∠ACB=80°,∴∠A+∠ABC=180°﹣∠ACB=180°﹣80°=100°,即∠A+2∠ABD=100°,∴△ABD为“奇妙三角形”.(2)证明:在△ABC中,∵∠C=80°,∴∠A+∠B=100°,∵△ABC为“奇妙三角形”,∴∠C+2∠B=100°或∠C+2∠A=100°,∴∠B=10°或∠A=10°,当∠B=10°时,∠A=90°,△ABC是直角三角形.当∠A=10°时,∠B=90°,△ABC是直角三角形.由此证得,△ABC是直角三角形.(3)解:∵BD平分∠ABC,∴∠ABC=2∠ABD,∵△ABD为“奇妙三角形”,∴∠A+2∠ABD=100°或2∠A+∠ABD=100°,①当∠A+2∠ABD=100°时,∠ABD=(100°﹣40°)÷2=30°,∴∠ABC=2∠ABD=60°,∴∠C=80°;②当2∠A+∠ABD=100°时,∠ABD=100°﹣2∠A=20°,∴∠ABC=2∠ABD=40°,∴∠C=100°;综上得出:∠C的度数为80°或100°.【知识点3 直角三角形的性质】直角三角形的性质:直角三角形两个内角互余.【题型8 运用直角三角形两锐角互余的性质倒角】【例8】(2022秋•宁晋县期中)如图,在△ABC中,∠BAC=90°,AC≠AB,AD是斜边BC上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是(  )A.3个 B.4个 C.5个 D.6个【分析】由“直角三角形的两锐角互余”,结合题目条件,得∠C=∠BDF=∠BAD=∠ADE.【解答】解:如图,∵AD是斜边BC上的高,DE⊥AC,DF⊥AB,∴∠C+∠B=90°,∠BDF+∠B=90°,∠BAD+∠B=90°,∴∠C=∠BDF=∠BAD,∵∠DAC+∠C=90°,∠DAC+∠ADE=90°,∴∠C=∠ADE,∴图中与∠C(除之C外)相等的角的个数是3,故选:A.【变式8-1】(2022•碑林区校级模拟)如图,已知Rt△ABC和Rt△DEF,∠BAC=∠EDF=90°,点F、A、D、C共线,AB、EF相交于点M,且EF⊥BC,则图中与∠E相等的角有(  )个.A.5 B.4 C.3 D.2【分析】利用平行线的性质与判定可得∠E=∠BME=∠AMF,根据同角的余角相等可得∠E=∠C,即可求解.【解答】解:∵∠BAC=∠EDF=90°,∴∠BAC+∠EDF=180°,∴AB∥DE,∠E+∠F=90°,∴∠E=∠BME=∠AMF,∵EF⊥BC,∴∠C+∠F=90°,∴∠E=∠C,故与∠E相等的角有3个,故选:C.【变式8-2】(2022春•邓州市期末)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,AD、BE相交于点F.(1)若∠CAD=36°,求∠AEF的度数;(2)试说明:∠AEF=∠AFE.【分析】(1)根据同角的余角相等得到∠ABD=∠CAD=36°,根据角平分线的性质求出∠ABE,根据直角三角形的性质计算即可;(2)根据角平分线的性质、直角三角形的性质证明结论.【解答】(1)解:∵AD⊥BC,∴∠ABD+∠BAD=90°,∵∠BAC=90°,∴∠BAD+∠CAD=90°,∴∠ABD=∠CAD=36°,∵BE平分∠ABC,∴∠ABE=12∠ABC=18°,∴∠AEF=90°﹣∠ABE=72°;(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE,∵∠ABE+∠AEF=90°,∠CBE+∠BFD=90°,∴∠AEF=∠BFD,∵∠AFE=∠BFD,∴∠AEF=∠AFE.【变式8-3】(2022春•米东区期末)如图1,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC.(1)求证:∠ACE=∠ABC;(2)求证:∠ECD+∠EBC=∠BEC;(3)求证:∠CEF=∠CFE.【分析】(1)根据条件易求∠ACE=∠D,进而可证明结论;(2)通过判定AD∥BC可得∠BEC+∠EBC=90°,根据直角三角形的性质结合角平分线的定义可得2∠EBC+∠ECD=90°,进而可证明结论;(3)由对顶角的定义结合角平分线的定义可证明结论.【解答】证明:(1)∵CE⊥AD,∠ACD=90°,∵∠ACE+∠ECD=∠D+∠ECD=90°,∴∠ACE=∠D.∵∠D=∠ABC,∴∠ACE=∠ABC;(2)∵∠BAC=∠ACD=90°,∠ABC=∠ADC,∴∠ACB=∠DAC,∴AD∥BC,∵CE⊥AD,∴CE⊥BC,∴∠BEC+∠EBC=90°,∵∠D+∠ECD=90°,∠D=∠ABC,∴∠ABC+∠ECD=90°,∵BE平分∠ABC,∴∠ABC=2∠EBC∴2∠EBC+∠ECD=90°,∴2∠EBC+∠ECD=∠BEC+∠EBC,即∠EBC+∠ECD=∠BEC;(3)∵∠ABF+∠AFB=90°,∠AFB=∠CFE,∴∠ABF+∠CFE=90°,∵∠CBE+∠CEF=90°,∠ABF=∠CAE,∴∠CEF=CFE. ∠B/度1030302020∠C/度7070606080∠EAD/度30a152030

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map