2024年湖北省武汉市求新联盟联考数学九上开学监测模拟试题【含答案】
展开
这是一份2024年湖北省武汉市求新联盟联考数学九上开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)函数中自变量x的取值范围是( )
A.B.且C.x<2且D.
2、(4分)若=x﹣5,则x的取值范围是( )
A.x<5B.x≤5C.x≥5D.x>5
3、(4分)甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如表:
则这四个人种成绩发挥最稳定的是( )
A.甲B.乙C.丙D.丁
4、(4分)正八边形的每一个内角的度数为:( )
A.45°B.60°C.120°D.135°
5、(4分)如图,添加下列条件仍然不能使▱ABCD成为菱形的是( )
A.AB=BCB.AC⊥BDC.∠ABC=90°D.∠1=∠2
6、(4分)下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:
要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择( )
A.甲B.乙C.丙D.丁
7、(4分)如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为( )
A.40°B.36°C.30°D.25°
8、(4分)下列因式分解正确的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在反比例函数的图像上有点它们的横坐标依次为1,2,3,……,n,n+1,分别过点作x轴,y轴的垂线,图中所构成的阴影部分面积从左到右依次为,则Sn=__________。(用含n的代数式表示)
10、(4分)如图,矩形中,,连接,以对角线为边按逆时针方向作矩形,使矩形矩形;再连接,以对角线为边,按逆时针方向作矩形,使矩形矩形, ..按照此规律作下去,若矩形的面积记作,矩形的面积记作,矩形的面积记作, ... 则的值为__________.
11、(4分)如图,将矩形沿折叠,使点落在边上的点处,点落在点处,已知,连接,则__________.
12、(4分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,两车的距离与慢车行驶的时间之间的函数关系如图所示,则快车的速度为__________.
13、(4分)如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过 秒,四边形APQC的面积最小.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知关于x的一元二次方程.
(1)当m为何值时,方程有两个不相等的实数根;
(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.
15、(8分)如图,直角坐标系中,一次函数的图象分别与,轴交于,两点,正比例函数的图象与交于点.
(1)求的值及的解析式;
(2)求的值;
(3)一次函数的图象为,且,,不能围成三角形,直接写出的值.
16、(8分)作平行四边形ABCD的高CE,B是AE的中点,如图.
(1)小琴说:如果连接DB,则DB⊥AE,对吗?说明理由.
(2)如果BE:CE=1: ,BC=3cm,求AB.
17、(10分)△ABC在平面直角坐标系中的位置如图所示.
(1)将△ABC向左平移4个单位长度后得到,点、、分别是A、B、C的对应点,请画出,并写出的坐标;
(2)将△ABC绕点O顺时针旋转90°,得到,点、、分别是A、B、C的对应点,请画出,并写出的坐标.
18、(10分)如图,在中,,,的垂直平分线分别交和于点、.求证:.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在平行四边形ABCD中,O是对角线AC、BD的交点,AC⊥BC,且AB=10㎝,AD=6㎝,则OB=_______________.
20、(4分)关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是__.
21、(4分)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确结论的序号是________________
22、(4分)将函数的图象向下平移3个单位,所得图象的函数解析式为______.
23、(4分)若n边形的内角和是它的外角和的2倍,则n= .
二、解答题(本大题共3个小题,共30分)
24、(8分)探究:如图,分别以△ABC的两边AB和AC为边向外作正方形ANMB和正方形ACDE,NC、BE交于点P.
求证:∠ANC=∠ABE.
应用:Q是线段BC的中点,若BC=6,则PQ= .
25、(10分)如图,在四边形ABCD中,AB=AD=4,∠A=60°,BC=4,CD=1.
(1)求∠ADC的度数;
(2)求四边形ABCD的面积.
26、(12分)如果一组数据1,2,2,4,的平均数为1.
(1)求的值;
(2)求这组数据的众数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
由已知得:且,
解得:且.
故选B.
2、C
【解析】
因为=-a(a≤0),由此性质求得答案即可.
【详解】
∵=x-1,
∴1-x≤0
∴x≥1.
故选C.
此题考查二次根式的性质:=a(a≥0),=-a(a≤0).
3、B
【解析】
方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.
【详解】
解:∵S甲2,=0.035,S乙2=0.016,S,丙2=0.022,S,丁2=0.025,∴S乙2最小.
∴这四个人种成绩发挥最稳定的是乙.
故选B.
4、D
【解析】
180°-360°÷8=135°,故选D.
错因分析 较易题.失分原因:没有掌握正多边形的内角公式.
5、C
【解析】
根据菱形的性质逐个进行证明,再进行判断即可.
【详解】
A、∵四边形ABCD是平行四边形,AB=BC,∴平行四边形ABCD是菱形,故本选项错误;
B、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,故本选项错误;C、∵四边形ABCD是平行四边形和∠ABC=90°不能推出,平行四边形ABCD是菱形,故本选项正确;
D、∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ADB=∠2,∵∠1=∠2,∴∠1=∠ADB,∴AB=AD,∴平行四边形ABCD是菱形,故本选项错误;
故选C.
本题考查了平行四边形的性质,菱形的判定的应用,注意:菱形的判定定理有:①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形.
6、C
【解析】
方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛.
【详解】
∵3.6<7.4<8.1,
∴甲和丙的最近几次数学考试成绩的方差最小,发挥稳定,
∵95>92,
∴丙同学最近几次数学考试成绩的平均数高,
∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择丙.
故选C.
此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
7、B
【解析】
根据AB=AC可得∠B=∠C,CD=DA可得∠ADB=2∠C=2∠B,BA=BD,可得∠BDA=∠BAD=2∠B,在△ABD中利用三角形内角和定理可求出∠B.
【详解】
解:∵AB=AC,
∴∠B=∠C,
∵CD=DA,
∴∠C=∠DAC,
∵BA=BD,
∴∠BDA=∠BAD=2∠C=2∠B,
设∠B=α,则∠BDA=∠BAD=2α,
又∵∠B+∠BAD+∠BDA=180°,
∴α+2α+2α=180°,
∴α=36°,即∠B=36°,
故选:B.
本题主要考查等腰三角形的性质,掌握等边对等角是解题的关键,注意三角形内角和定理和方程思想的应用.
8、C
【解析】
根据因式分解的定义及方法逐项分析即可.
【详解】
A. ,故不正确;
B. 在实数范围内不能因式分解,故不正确;
C. ,正确;
D. 的右边不是积的形式,故不正确;
故选C.
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
由题意可知,每个小矩形的宽度为1,第个小矩形的长为 ,故将 代入,可求。
【详解】
解:依题意得
故答案为:
掌握反比例函数与面积的关系是解题的关键。
10、
【解析】
首先根据矩形的性质,求出AC,根据边长比求出面积比,依次类推,得出规律,即可得解.
【详解】
∵四边形ABCD是矩形,
∴AD⊥DC,
∴AC=,
∵按逆时针方向作矩形ABCD的相似矩形AB1C1C,
∴矩形AB1C1C的边长和矩形ABCD的边长的比为:2
∴矩形AB1C1C的面积和矩形ABCD的面积的比5:4,
∵矩形ABCD的面积=2×1=2,
∴矩形AB1C1C的面积=,
依此类推,矩形AB2C2C1的面积和矩形AB1C1C的面积的比5:4
∴矩形AB2C2C1的面积=
∴矩形AB3C3C2的面积=,
按此规律第n个矩形的面积为:
则
故答案为:.
本题考查了矩形的性质,勾股定理,相似多边形的性质,解此题的关键是能根据求出的结果得出规律.
11、75°
【解析】
【分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.
【详解】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,
∴∠EBG=∠EGB,
∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,
又∵AD∥BC,
∴∠AGB=∠GBC,
∴∠AGB=∠BGH,
∵∠DGH=30°,
∴∠AGH=150°,
∴∠AGB=∠AGH=75°,
故答案为:75°.
【点睛】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
12、150km/h
【解析】
假设快车的速度为a(km/h),慢车的速度为b(km/h).当两车相遇时,两车各自所走的路程之和就是甲乙两地的距离,由此列式4a+4b=900①,另外,由于快车到达乙地的时间比慢车到达甲地的时间要短,图中的(12,900)这个点表示慢车刚到达甲地,这时的两车距离等于两地距离,而x=12就是慢车正好到达甲地的时间,所以,12b=900②,①和②可以求出快车的速度.
【详解】
解:设快车的速度为a(km/h),慢车的速度为b(km/h),
∴4(a+b)=900,
∵慢车到达甲地的时间为12小时,
∴12b=900,
b=75,
∴4(a+75)=900,
解得:a=150;
∴快车的速度为150km/h.
故答案为:150km/h.
此题主要考查了一次函数的应用,解题的关键是首先正确理解题意,然后根据题目的数量关系得出b的值.
13、3
【解析】
根据等量关系“四边形APQC的面积=三角形ABC的面积﹣三角形PBQ的面积”列出函数关系,求得最小值.
【详解】
设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Smm2,
则有:S=S△ABC﹣S△PBQ==4t2﹣24t+144=4(t﹣3)2+1.
∵4>0 ∴当t=3s时,S取得最小值.
考点:二次函数的应用.
三、解答题(本大题共5个小题,共48分)
14、(1)m>﹣;(2)m=﹣1.
【解析】
(1)根据方程的系数结合根的判别式,即可得出△=1m+17>0,解之即可得出结论;
(2)设方程的两根分别为a、b,根据根与系数的关系结合菱形的性质,即可得出关于m的一元二次方程,解之即可得出m的值,再根据a+b=﹣2m﹣1>0,即可确定m的值.
【详解】
解:(1)∵方程有两个不相等的实数根,
∴△==1m+17>0,
解得:m>﹣,
∴当m>﹣时,方程有两个不相等的实数根.
(2)设方程的两根分别为a、b,根据题意得:a+b=﹣2m﹣1,ab=.
∵2a、2b为边长为5的菱形的两条对角线的长,∴= =2m2+1m+9=52=25,解得:m=﹣1或m=2.
∵a>0,b>0,∴a+b=﹣2m﹣1>0,∴m=﹣1.
若边长为5的菱形的两条对角线的长分别为方程两根的2倍,则m的值为﹣1.
本题考查了根的判别式、根与系数的关系、菱形的性质以及解一元二次方程,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=1m+17>0;(2)根据根与系数的关系结合菱形的性质,找出关于m的一元二次方程.
15、(1);(2)4;(3)或2或.
【解析】
(1)先求得点的坐标,再运用待定系数法即可得到的解析式;
(2)过作于,于,则,,再根据,,可得,,进而得出的值;
(3)分三种情况:当经过点时,;当,平行时,;当,平行时,;故的值为或2或.
【详解】
解:(1)把代入一次函数,可得
,
解得,
,
设的解析式为,则,
解得,
的解析式为;
(2)如图,过作于,于,则,,
,令,则;令,则,
,,
,,
;
(3)一次函数的图象为,且,,不能围成三角形,
当经过点时,;
当,平行时,;
当,平行时,;
故的值为或2或.
本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.
16、(1)BD⊥AE,理由见解析;(2)(cm).
【解析】
(1)直接利用平行四边形的性质得出BD∥CE,进而得出答案;
(2)直接利用勾股定理得出BE的长,进而得出答案.
【详解】
解:(1)对,
理由:∵ABCD是平行四边形,
∴CD∥AB且CD=AB.
又B是AE的中点,
∴CD∥BE且CD=BE.
∴BD∥CE,
∵CE⊥AE,
∴BD⊥AE;
(2)设BE=x,则CE=x,
在Rt△BEC中:x2+(x)2=9,
解得:x=,
故AB=BE=(cm).
此题主要考查了平行四边形的性质以及勾股定理,正确应用平行四边形的性质是解题关键.
17、(1)(1)画图见详解,C1的坐标(−1,4);(2),画图见详解,C2的坐标(4,−3).
【解析】
(1)分别作出A,B,C的对应点A1,B1,C1即可;
(2)分别作出A,B,C的对应点A2,B2,C2即可.
【详解】
解:(1)如图△A1B1C1即为所求,C1的坐标(−1,4);
(2)如图△A2B2C2即为所求,C2的坐标(4,−3).
本题考查作图−平移变换,旋转变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
18、详见解析
【解析】
连接BE,由垂直平分线的性质可求得∠EBC=∠ABE=∠A=30°,在Rt△BCE中,由直角三角形的性质可证得BE=2CE,则可证得结论.
【详解】
证明:连接,
为边为垂直平分线,
.
,,
,
,
在中,,
,
.
本题主要考查了含30°角的直角三角形的性质,线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4cm
【解析】
在▱ABCD中
∵BC=AD=6cm,AO=CO,
∵AC⊥BC,
∴∠ACB=90°,
∴AC==8cm,
∴AO=AC=4cm;
故答案为4cm.
20、m=1.
【解析】
分析:若一元二次方程有实根,则根的判别式△=b2﹣1ac≥2,建立关于m的不等式,求出m的取值范围.还要注意二次项系数不为2.
详解:∵关于x的一元二次方程(m﹣5)x2+2x+2=2有实根,
∴△=1﹣8(m﹣5)≥2,且m﹣5≠2,
解得m≤5.5,且m≠5,
则m的最大整数解是m=1.
故答案为m=1.
点睛:考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>2,方程有两个不相等的实数根;(2)△=2,方程有两个相等的实数根;(3)△<2方程没有实数根.
21、①②④
【解析】
根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.
【详解】
解:∵四边形ABCD是正方形,
∴AB=AD,
∵△AEF是等边三角形,
∴AE=AF,
在Rt△ABE和Rt△ADF中,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF,
∵BC=DC,
∴BC-BE=CD-DF,
∴CE=CF,
∴①说法正确;
∵CE=CF,
∴△ECF是等腰直角三角形,
∴∠CEF=45°,
∵∠AEF=60°,
∴∠AEB=75°,
∴②说法正确;
如图,连接AC,交EF于G点,
∴AC⊥EF,且AC平分EF,
∵∠CAF≠∠DAF,
∴DF≠FG,
∴BE+DF≠EF,
∴③说法错误;
∵EF=2,
∴CE=CF=,
设正方形的边长为a,
在Rt△ADF中,
AD2+DF2=AF2,即a2+(a-)2=4,
解得a=,
则a2=2+,
S正方形ABCD=2+,
④说法正确,
故答案为①②④.
本题考查正方形的性质,全等三角形的判定与性质,熟悉掌握是解题关键.
22、y=2x﹣1
【解析】
根据“上加下减”的平移原理,结合原函数解析式即可得出结论.
【详解】
根据“上加下减”的原理可得:
函数y=2x的图象向下平移1个单位后得出的图象的函数解析式为y=2x﹣1.
故答案为:y=2x﹣1.
本题考查了一次函数图象与几何变换,解题的关键是根据平移原理找出平移后的函数解析式.
23、6
【解析】
此题涉及多边形内角和和外角和定理
多边形内角和=180(n-2), 外角和=360º
所以,由题意可得180(n-2)=2×360º
解得:n=6
二、解答题(本大题共3个小题,共30分)
24、证明见解析,3
【解析】
探究:根据正方形性质得出AN=AB,AC=AE,∠NAB=∠CAE=90°,求出∠NAC=∠BAE,证出△ANC≌△ABE即可;
应用:先证明△BCP为直角三角形,然后,依据直角三角形斜边上的中线等于斜边的一半求解即可.
【详解】
证明:∵四边形ANMB和ACDE是正方形,
∴AN=AB,AC=AE,∠NAB=∠CAE=90°,
∵∠NAC=∠NAB+∠BAC,∠BAE=∠BAC+∠CAE,
∴∠NAC=∠BAE,
在△ANC和△ABE中,AN=AB,∠NAC=∠BAE,AC=AE
∴△ANC≌△ABE(SAS),
∴∠ANC=∠ABE.
应用:如图所示,
∵四边形NABM是正方形,
∴∠NAB=90°,
∴∠ANC+∠AON=90°,
∵∠BOP=∠AON,∠ANC=∠ABE,
∴∠ABP+∠BOP=90°,
∴∠BPC=∠ABP+∠BOP=90°,
∵Q为BC中点,BC=6,
∴PQ=BC=3,
本题考查了三角形的外角性质,直角三角形斜边上中线性质,垂直定义,全等三角形的性质和判定,正方形性质的应用,关键是推出△ANC≌△ABE和推出∠BPC=90°.
25、 (1) 150°;(2)
【解析】
(1)连接BD,首先证明△ABD是等边三角形,可得∠ADB=60°,DB=4,再利用勾股定理逆定理证明△BDC是直角三角形,进而可得答案;
(2)过B作BE⊥AD,利用三角形函数计算出BE长,再利用△ABD的面积加上△BDC的面积可得四边形ABCD的面积.
【详解】
(1)连接BD,
∵AB=AD,∠A=60°,
∴△ABD是等边三角形,
∴∠ADB=60°,
DB=4,
∵42+12=(4)2,
∴DB2+CD2=BC2,
∴∠BDC=90°,
∴∠ADC=60°+90°=150°;
(2)过B作BE⊥AD,
∵∠A=60°,AB=4,
∴BE=AB•sin60°=4×=2,
∴四边形ABCD的面积为:AD•EB+DB•CD=×4×2+×4×1=4+2.
26、(1);(2)2和4.
【解析】
(1)利用平均数的计算公式列出关于x的方程,求出x即可求出答案;
(2)根据众数的定义即可求出答案.
【详解】
解:(1)由平均数为1,得,
解得:.
(2)当时,这组数据是2,2,1,4,4,
其中有两个2,也有两个4,是出现次数最多的,
∴这组数据的众数是2和4.
本题考查平均数和众数,熟练掌握平均数的计算公式和众数的定义是解决本题的关键.在(2)中,一定记住一组数的众数有可能有几个.
题号
一
二
三
四
五
总分
得分
批阅人
选手
甲
乙
丙
丁
方差(环2)
0.035
0.016
0.022
0.025
相关试卷
这是一份湖北省武汉市求新联盟联考2023-2024学年九上数学期末经典模拟试题含答案,共9页。
这是一份湖北省武汉市求新联盟联考2023-2024学年数学九上期末预测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,计算,关于的一元二次方程的根的情况是等内容,欢迎下载使用。
这是一份湖北省武汉市蔡甸区求新联盟2023-2024学年九上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了已知二次函数,下列四对图形中,是相似图形的是,函数y=3等内容,欢迎下载使用。