湖北省武汉市蔡甸区求新联盟2024年九年级数学第一学期开学学业质量监测试题【含答案】
展开
这是一份湖北省武汉市蔡甸区求新联盟2024年九年级数学第一学期开学学业质量监测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)估计﹣÷2的运算结果在哪两个整数之间( )
A.0和1B.1和2C.2和3D.3和4
2、(4分)下列等式一定成立的是( )
A.B.C.D.
3、(4分)用配方法解一元二次方程,此方程可化为的正确形式是( )
A.B.C.D.
4、(4分)已知一次函数y=(k﹣2)x+k不经过第三象限,则k的取值范围是( )
A.k≠2B.k>2C.0<k<2D.0≤k<2
5、(4分)如图,在△ABC中,点D,E,F分别是AB,BC,AC的中点,连接DE,EF,DF,则下列说法不正确的是( )
A.S△DEF=S△ABC
B.△DEF≌△FAD≌△EDB≌△CFE
C.四边形ADEF,四边形DBEF,四边形DECF都是平行四边形
D.四边形ADEF的周长=四边形DBEF的周长=四边形DECF的周长
6、(4分)如图,点是菱形边上的一动点,它从点出发沿在路径匀速运动到点,设的面积为,点的运动时间为,则关于的函数图象大致为
A.B.
C.D.
7、(4分)下列选项中的图形,不属于中心对称图形的是( )
A. B. C. D.
8、(4分)下列条件中,不能判定四边形ABCD为菱形的是( ).
A.AC⊥BD,AC与BD互相平分
B.AB=BC=CD=DA
C.AB=BC,AD=CD,且AC⊥BD
D.AB=CD,AD=BC,AC⊥BD
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在直角坐标系中,直线y=x+1与y轴交于点A,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C3C2…,A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,图中阴影部分三角形的面积从左到右依次记为S1、S2、S3、…Sn,则Sn的值为__(用含n的代数式表示,n为正整数).
10、(4分)如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4cm,BD=8cm,则这个菱形的面积是_____cm1.
11、(4分)某商品经过两次连续的降价,由原来的每件250元降为每件160元,则该商品平均每次降价的百分率为____________.
12、(4分)已知一组数据,,,,的平均数是2,那么另一组数据,,,,的平均数是______.
13、(4分)在矩形纸片ABCD中,AB=5,AD=13.如图所示,折叠纸片,使点A落在BC边上的A¢处,折痕为PQ,当点A¢在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A¢在BC边上可移动的最大距离为_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:如图1,在平面直角坐标系中,直线与坐标轴分别相交于点,与直线相交于点.
(1)求点的坐标;
(2)若平行于轴的直线交于直线于点,交直线于点,交轴于点,且,求的值;
(3)如图2,点是第四象限内一点,且,连接,探究与之间的位置关系,并证明你的结论.
15、(8分)如图,在平面直角坐标系中,矩形OABC的顶点A在x轴上,C在y轴上,反比例函数的图象分别交BC,AB于E,F,已知,.
(1)求k的值;
(2)若,求点E的坐标.
16、(8分)某班“数学兴趣小组”对函数y=x−2|x|的图象和性质进行了探究,探究过程如下,请补充完整:
(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:
其中,m=___.
(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.
(3)探究函数图象发现:
①函数图象与x轴有___个交点,所以对应的方程x−2|x|=0有___个实数根;
②方程x−2|x|=−有___个实数根;
③关于x的方程x−2|x|=a有4个实数根时,a的取值范围是___.
17、(10分)如图,四边形ABCD是平行四边形,对角线AC与BD交于点O,点E是BC边上一点,只用一把无刻度的直尺在AD边上作点F,使得DF=BE.
(1)如图1,①请画出满足题意的点F,保留痕迹,不写作法;
②依据你的作图,证明:DF=BE.
(2)如图2,若点E是BC边中点,请只用一把无刻度的直尺作线段FG,使得FG∥BD,分别交AD、AB于点F、点G.
18、(10分)如图 1,在正方形 ABCD 中, P 是对角线 AC 上的一点,点 E 在 BC 的延长线上,且PE PB .
(1)求证: △BCP≌△DCP ;
(1)求证: DPE ABC ;
(3)把正方形 ABCD 改为菱形 ABCD ,且 ABC 60 ,其他条件不变,如图 1.连接 DE , 试探究线段 BP 与线段 DE 的数量关系,并说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算的结果是__________.
20、(4分)如图,在直角坐标系中,、两点的坐标分别为和,将一根新皮筋两端固定在、两点处,然后用手勾住橡皮筋向右上方拉升,使橡皮筋与坐标轴围成一个矩形,若反比例函数的图像恰好经过点,则的值______.
21、(4分)设x1,x2是一元二次方程x2﹣x﹣1=0的两根,则x1+x2+x1x2=_____.
22、(4分)在函数y=中,自变量x的取值范围是_____.
23、(4分)如图,是同一双曲线上的三点过这三点分别作轴的垂线,垂足分别为,连结得到的面积分别为.那么的大小关系为____.
二、解答题(本大题共3个小题,共30分)
24、(8分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.
(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;
(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)
25、(10分)如图,在平面直角坐标系中,点是坐标原点,四边形是菱形,点的坐标为,点在轴的正半轴上,直线交轴于点,边交轴于点,连接
(1)菱形的边长是________;
(2)求直线的解析式;
(3)动点从点出发,沿折线以2个单位长度/秒的速度向终点匀速运动,设的面积为,点的运动时间为秒,求与之间的函数关系式.
26、(12分)如图,直线AB的函数解析式为y=-2x+8,与x轴交于点A,与y轴交于点B。
(1)求A、B两点的坐标;
(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接E,若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围。
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
先估算出的大致范围,然后再计算出÷2的大小,从而得到问题的答案.
【详解】
25<32<31,∴5<<1.
原式=﹣2÷2=﹣2,∴3<﹣÷2<2.
故选D.
本题主要考查的是二次根式的混合运算,估算无理数的大小,利用夹逼法估算出的大小是解题的关键.
2、A
【解析】
根据分式的基本性质逐一判断即可.
【详解】
解:约分正确,故A正确,符号处理错误,故B错误,根据分式的基本性质明显错误,故C错误,根据分式的基本性质也错误,故D错误.
故选:A.
本题考查的是分式的基本性质对约分的要求,掌握分式的基本性质是解题关键.
3、D
【解析】
方程常数项移到右边,两边加上9变形即可得到结果.
【详解】
解:方程移项得:x2-6x=-1,
配方得:x2-6x+9=8,即(x-3)2=8,
故选D.
本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.
4、D
【解析】
直线不经过第三象限,则经过第二、四象限或第一、二、四象限,当经过第二、四象限时,函数为正比例函数,k=0
当经过第一、二、四象限时, ,解得0
相关试卷
这是一份2025届湖北省武汉市求新联盟联考数学九上开学达标测试试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年湖北省武汉市求新联盟联考数学九上开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖北省武汉市蔡甸区求新联盟2023-2024学年九上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了已知二次函数,下列四对图形中,是相似图形的是,函数y=3等内容,欢迎下载使用。