|试卷下载
搜索
    上传资料 赚现金
    2024年黑龙江省佳木斯市富锦市第四中学数学九年级第一学期开学统考试题【含答案】
    立即下载
    加入资料篮
    2024年黑龙江省佳木斯市富锦市第四中学数学九年级第一学期开学统考试题【含答案】01
    2024年黑龙江省佳木斯市富锦市第四中学数学九年级第一学期开学统考试题【含答案】02
    2024年黑龙江省佳木斯市富锦市第四中学数学九年级第一学期开学统考试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年黑龙江省佳木斯市富锦市第四中学数学九年级第一学期开学统考试题【含答案】

    展开
    这是一份2024年黑龙江省佳木斯市富锦市第四中学数学九年级第一学期开学统考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在实数范围内,下列判断正确的是( )
    A.若,则m=nB.若,则a>b
    C.若,则a=bD.若,则a=b
    2、(4分)将若干个小菱形按如图所示的规律排列:第一个图形有5个菱形,第二个图形有9个菱形第三个图形有13个菱形,…,则第9个图形有( )个菱形.
    A.33B.36C.37D.41
    3、(4分)如图,在菱形ABCD中,对角线AC,BD相交于点O. 下列结论中不一定成立的是( )
    A.AB∥CDB.OA=OC
    C.AC⊥BDD.AC=BD
    4、(4分)不等式组的解集是( )
    A.B.C.D.
    5、(4分)下列计算正确的是
    A.B.C.D.
    6、(4分)如图,正方形的边长为4,点是对角线的中点,点、分别在、边上运动,且保持,连接,,.在此运动过程中,下列结论:①;②;③四边形的面积保持不变;④当时,,其中正确的结论是( )
    A.①②B.②③C.①②④D.①②③④
    7、(4分)甲、乙两人加工同一种服装,乙每天比甲多加工1件,乙加工服装24件所用时间与甲加工服装20件所用时间相同。设甲每天加工服装x件。由题意可得方程( )
    A.B.
    C.D.
    8、(4分)某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是( )
    A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍
    C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)函数中,当满足__________时,它是一次函数.
    10、(4分)在数轴上表示实数a的点如图所示,化简+|a-2|的结果为____________.
    11、(4分)已知点P(m-3,m+1)在第二象限,则m的取值范围是_______________.
    12、(4分)小明租用共享单车从家出发,匀速骑行到相距米的图书馆还书.小明出发的同时,他的爸爸以每分钟米的速度从图书馆沿同一条道路步行回家,小明在图书馆停留了分钟后沿原路按原速返回.设他们出发后经过(分)时,小明与家之间的距离为(米),小明爸爸与家之间的距离为(米),图中折线、线段分别表示、与之间的函数关系的图象.小明从家出发,经过___分钟在返回途中追上爸爸.
    13、(4分)一个多边形每个外角都是,则这个多边形是_____边形.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在平面直角坐标系中,已知点在抛物线()上,且,
    (1)若,求,的值;
    (2)若该抛物线与轴交于点,其对称轴与轴交于点,试求出,的数量关系;
    (3)将该抛物线平移,平移后的抛物线仍经过,点的对应点,当时,求平移后抛物线的顶点所能达到的最高点的坐标.
    15、(8分)下表是某网络公司员工月收人情况表.
    (1)求此公司员工月收人的中位数;
    (2)小张求出这个公司员工月收人平均数为元,若用所求平均数反映公司全体员工月收人水平,合适吗?若不合适,用什么数据更好?
    16、(8分)如图,直线y=x+与x轴相交于点B,与y轴相交于点A.
    (1)求∠ABO的度数;
    (2)过点A的直线l交x轴的正半轴于点C,且AB=AC,求直线的函数解析式.
    17、(10分)如图,O是平行四边形ABCD对角线AC、BD的交点,E是CD的中点,EF⊥OE交AC延长线于F,若∠ACB=50°,求∠F的度数.
    18、(10分)如图,在直角坐标系中,已知点O,A的坐标分别为(0,0),(﹣3,﹣2).
    (1)点B的坐标是 ,点B与点A的位置关系是 .现将点B,点A都向右平移5个单位长度分别得到对应点C和D,顺次连接点A,B,C,D,画出四边形ABCD;
    (2)横、纵坐标都是整数的点成为整数点,在四边形ABCD内部(不包括边界)的整数点M使S△ABM=8,请直接写出所有点M的可能坐标;
    (3)若一条经过点(0,﹣4)的直线把四边形ABCD的面积等分,则这条直线的表达式是 ,并在图中画出这条直线.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,直线AB与反比例函数的图象交于点A(u,p)和点B(v,q),与x轴交于点C,已知∠ACO=45°,若<u<2,则v的取值范围是__________.
    20、(4分)化简;÷(﹣1)=______.
    21、(4分)现有两根木棒的长度分别是4 米和3 米,若要钉成一个直角三角形木架,则第三根木棒的长度为_________米.
    22、(4分)正方形的边长为,则这个正方形的对角线长为_________.
    23、(4分)如图,将正方形OABC放在平面直角坐标系中,O是坐标原点,点A的坐标是(2,3),则C点坐标是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在平面直角坐标系xOy中,已知一次函数的图象与x轴交于点,与轴交于点.
    (1)求,两点的坐标;
    (2)在给定的坐标系中画出该函数的图象;
    (3)点M(1,y1),N(3,y2)在该函数的图象上,比较y1与y2的大小.
    25、(10分)如图,在中,,点在上,若,平分.
    (1)求的长;
    (2)若是中点,求线段的长.
    26、(12分)今年5月19日为第29个“全国助残日”我市某中学组织了献爱心捐款活动,该校数学课外活动小组对本次捐款活动做了一次抽样调查,并绘制了如下不完整的频数分布表和频数分布直方图(每组含前一个边界,不含后一个边界).
    (1)填空:________,________.
    (2)补全频数分布直方图.
    (3)该校有2000名学生估计这次活动中爱心捐款额在的学生人数.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据实数的基本性质,逐个分析即可.
    【详解】
    A、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;
    B、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;
    C、两个数可能互为相反数,如a=-3,b=3,故选项错误;
    D、根据立方根的定义,显然这两个数相等,故选项正确.
    故选:D.
    考核知识点:实数的性质.理解算术平方根和立方根性质是关键.
    2、C
    【解析】
    设第n个图形有an个菱形(n为正整数),观察图形,根据各图形中菱形个数的变化可得出变化规律“an=4n+1(n为正整数)”,再代入n=9即可求出结论.
    【详解】
    解:设第n个图形有an个菱形(n为正整数).
    观察图形,可知:a1=5=4+1,a2=9=4×2+1,a3=13=4×3+1,a4=17=4×4+1,
    ∴an=4n+1(n为正整数),
    ∴a9=4×9+1=1.
    故选:C.
    本题考查了规律型:图形的变化类,根据各图形中菱形个数的变化找出变化规律“an=4n+1(n为正整数)”是解题的关键.
    3、D
    【解析】
    直接利用菱形的性质对边互相平行、对角线互相垂直且平分进而分析即可.
    【详解】
    ∵四边形ABCD是菱形,
    ∴AB∥DC,OA=OC,AC⊥BD,
    无法得出AC=BD,故选项D错误,
    故选D.
    此题主要考查了菱形的性质,正确把握菱形对角线之间关系是解题关键.
    4、A
    【解析】
    分别求出各不等式的解集,再求出其公共解集即可.
    【详解】
    解:
    解不等式①得:x ⩽ 2,
    解不等式②得:x>−3,
    ∴不等式组的解集为:−3故选:A.
    本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    5、B
    【解析】
    根据二次根式的运算法则,逐一计算即可得解.
    【详解】
    A选项,,错误;
    B选项,,正确;
    C选项,,错误;
    D选项,,错误;
    故答案为B.
    此题主要考查二次根式的运算,熟练掌握,即可解题.
    6、D
    【解析】
    过O作于G,于,由正方形的性质得到,求得,,得到,根据全等三角形的性质得到,故①正确;,推出,故②正确;得到四边形的面积正方形的面积,四边形的面积保持不变;故③正确;根据平行线的性质得到
    ,,求得,得到,于是得到,故④正确.
    【详解】
    解:过O作于G,于H,
    ∵四边形是正方形,

    ,,
    ∵点O是对角线BD的中点,
    ,,
    ,,

    ,,
    ∴四边形是正方形,



    在与中,


    ,故①正确;,

    ,故②正确;

    ∴四边形的面积正方形的面积,
    ∴四边形的面积保持不变;故③正确;

    ,,




    ,故④正确;
    故选:.
    本题考查了正方形的性质,全等三角形的判定和性质,平行线的性质,熟练掌握正方形的性质是解题的关键.
    7、C
    【解析】
    根据乙每天比甲多加工1件,乙加工服装24件所用时间与甲加工服装20件所用时间相同,列出相应的方程,本题得以解决.
    【详解】
    解:由题意可得,,
    故选:C.
    本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的方程.
    8、C
    【解析】
    【分析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.
    【详解】观察直方图,由图可知:
    A. 最喜欢足球的人数最多,故A选项错误;
    B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;
    C. 全班共有12+20+8+4+6=50名学生,故C选项正确;
    D. 最喜欢田径的人数占总人数的=8 %,故D选项错误,
    故选C.
    【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、k≠﹣1
    【解析】
    分析: 根据一次函数的定义解答即可,一般地,形如y=kx+b,(k为常数,k≠0)的函数叫做一次函数.
    详解:由题意得,
    k+1≠0,
    ∴k ≠-1.
    故答案为k ≠-1.
    点睛: 本题考查了一次函数的定义,熟练掌握一次函数的定义是解答本题的关键.
    10、3.
    【解析】
    试题分析:由数轴得知,a>2,且a<5,所以a-5<0,a-2>0,原式化简=5-a+a-2=3.故答案为3.
    考点:绝对值意义与化简.
    11、﹣1<m<1
    【解析】
    试题分析:让点P的横坐标小于0,纵坐标大于0列式求值即可.
    解:∵点P(m﹣1,m+1)在第二象限,
    ∴m﹣1<0,m+1>0,
    解得:﹣1<m<1.故填:﹣1<m<1.
    【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
    12、1.
    【解析】
    用路程除以时间就是小亮骑自行车的速度;设小亮从家出发,经过x分钟,在返回途中追上爸爸,再由题意得出等量关系除了小亮在图书馆停留2分钟,即x-2分钟所走的路程减去小亮从家到图书馆相距的2400米,就是小亮在返回途中追上爸爸时,爸爸所走的路程,列出方程即可解答出来
    【详解】
    解:小亮骑自行车的速度是2400÷10=240m/min;
    先设小亮从家出发,经过x分钟,在返回途中追上爸爸,由题意可得:
    (x-2)×240-2400=96x
    240x-240×2-2400=96x
    144x=2880
    x=1.
    答:小亮从家出发,经过1分钟,在返回途中追上爸爸.
    此题考查一次函数的实际运用,根据图象,找出题目蕴含的数量关系,根据速度、时间、路程之间关系解决问题.
    13、十二
    【解析】
    利用任何多边形的外角和是360°即可求出答案.
    【详解】
    多边形的外角的个数是360÷30=1,所以多边形的边数是1.
    故答案为:十二.
    本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.
    三、解答题(本大题共5个小题,共48分)
    14、(1)b=1,c=3;(2);(3)(,)
    【解析】
    (1)把代入得,与构成方程组,解方程组即可求得;
    (2)求得,,,即可得到,,即可求得;
    (3)把化成顶点式,得到,根据平移的规律得到,把代入,进一步得到,即,分类求得,由,得到,即,从而得到平移后的解析式为,得到顶点为,,设,即,即可得到取最大值为,从而得到最高点的坐标.
    【详解】
    解:(1)把代入,可得,
    解,可得,;
    (2)由,得.
    对于,
    当时,.
    抛物线的对称轴为直线.
    所以,,.
    因为,
    所以,,

    (3)由平移前的抛物线,可得
    ,即.
    因为平移后的对应点为
    可知,抛物线向左平移个单位长度,向上平移个单位长度.
    则平移后的抛物线解析式为,
    即.
    把代入,得.


    所以.
    当时,(不合题意,舍去);
    当时,,
    因为,所以.
    所以,
    所以平移后的抛物线解析式为.
    即顶点为,,
    设,即.
    因为,所以当时,随的增大而增大.
    因为,
    所以当时,取最大值为,
    此时,平移后抛物线的顶点所能达到的最高点坐标为,.
    本题是二次函数的综合题,考查了二次函数的图象和系数的关系,二次函数的点的坐标特征,二次函数的图象与几何变换,也考查二次函数的性质.
    15、(1)3000元;(2)不合适,利用中位数更好.
    【解析】
    (1)根据中位数的定义首先找到25的最中间的数,再确定对应的工资数即可;
    (2)先分析25人的收入与平均工资关系,根据月收入平均数为6080元,和25名员工的收入进行比较即可.
    【详解】
    25个数据按大小顺序排列,最中间的是第13个数,
    从收入表中可看出,第13个员工的工资数是3000元,
    因此,中位数为元;
    用所求平均数反应公司全体员工月收入水平不合适;
    这个公司员工月收入平均数为6080元,但在25名员工中,仅有3名员工的收入在平均数以上,而另有22名员工收入在平均数以下,因此,用平均数反映所有员工的月收入不合适,
    利用中位数更好.
    此题考查了平均数、中位数,用到的知识点是中位数的定义,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.
    16、(1)∠ABO=60°;(2)
    【解析】
    (1)根据函数解析式求出点A、B的坐标,然后在Rt△ABO中,利用三角函数求出tan∠ABO的值,继而可求出∠ABO的度数;
    (2)根据题意可得,AB=AC,AO⊥BC,可得AO为BC的中垂线,根据点B的坐标,得出点C的坐标,然后利用待定系数法求出直线l的函数解析式.
    【详解】
    解:(1)对于直线y=x+,
    令x=0,则y=,
    令y=0,则x=﹣1,
    故点A的坐标为(0,),点B的坐标为(﹣1,0),
    则AO=,BO=1,
    在Rt△ABO中,
    ∵tan∠ABO=,
    ∴∠ABO=60°;
    (2)在△ABC中,
    ∵AB=AC,AO⊥BC,
    ∴AO为BC的中垂线,
    即BO=CO,
    则C点的坐标为(1,0),
    设直线l的解析式为:y=kx+b(k,b为常数),
    则 ,
    解得: ,
    即函数解析式为:y=﹣x+.
    本题考查了待定系数法求一次函数解析式,涉及了的知识点有:待定系数法确定一次函数解析式,一次函数与坐标轴的交点,坐标与图形性质,熟练掌握待定系数法是解答本题的关键.
    17、∠F的度数是40°.
    【解析】
    证出OE是△BCD的中位线,得出OE∥BC,得出∠EOF=∠ACB=50°,由直角三角形的性质即可得出结果.
    【详解】
    解:∵四边形ABCD是平行四边形
    ∴OB=OD,即O是BD的中点,
    ∵E是CD的中点,
    ∴OE是△BCD的中位线,
    ∴OE∥BC,
    ∴∠EOF=∠ACB=50°,
    ∵EF⊥OE,
    ∴∠EOF+∠F=90°,
    ∴∠F=90°﹣∠EOF=90°﹣50°=40°;
    答:∠F的度数是40°.
    本题考查了平行四边形的性质、三角形中位线定理、直角三角形的性质,熟练掌握平行四边形的性质,证明OE是△BCD的中位线是解题的关键.
    18、(1)(﹣3,2),关于x轴对称;(2)点M(1,1),(1,0),(1,﹣1);(3)y=﹣8x﹣1
    【解析】
    (1)根据直角坐标系的特点即可求解,根据题意平移坐标再连接即可;
    (2)设△ABM的AB边上的高为h,根据面积求出h,即可求解;
    【详解】
    解:(1)B(﹣3,2),A、B关于x轴对称;四边形ABCD如图所示;
    故答案为(﹣3,2),关于x轴对称.
    (2)设△ABM的AB边上的高为h,由题意:×1×h=8,
    ∴h=1,
    ∴满足条件的点在直线l上,且在矩形内部,
    ∴点M(1,1),(1,0),(1,﹣1).
    (3)∵直线把四边形ABCD的面积等分,
    ∴直线经过矩形的对称中心(﹣,0),
    设直线的解析式为y=kx+b,则有,
    解得,
    ∴直线的解析式为y=﹣8x﹣1.
    故答案为y=﹣8x﹣1.
    此题主要考查直角坐标系与几何,解题的关键是熟知一次函数解析式的解法.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2<v<1
    【解析】
    由∠ACO=45°可设直线AB的解析式为y=-x+b,由点A、B在反比例函数图象上可得出p=,q=,代入点A、B坐标中,再利用点A、B在直线AB上可得=﹣u+b①,=﹣v+b②,两式做差即可得出u关于v的关系式,结合u的取值范围即可得答案.
    【详解】
    ∵∠ACO=45°,直线AB经过二、四象限,
    ∴设直线AB的解析式为y=﹣x+b.
    ∵点A(u,p)和点B(v,q)为反比例函数的图象上的点,
    ∴p=,q=,
    ∴点A(u,),点B(v,).
    ∵点A、B为直线AB上的点,
    ∴=﹣u+b①,=﹣v+b②,
    ①﹣②得:,
    即.
    ∵<u<2,
    ∴2<v<1,
    故答案为:2<v<1.
    本题考查反比例函数与一次函数的综合,根据∠ACO=45°设出直线AB解析式,熟练掌握反比例函数图象上的点的坐标特征是解题关键.
    20、-
    【解析】
    直接利用分式的混合运算法则即可得出.
    【详解】
    原式,


    .
    故答案为.
    此题主要考查了分式的化简,正确掌握运算法则是解题关键.
    21、.
    【解析】
    题目中没有明确直角边和斜边,故要分情况讨论,再根据勾股定理求解即可.
    【详解】
    解:当第三根木棒为直角边时,长度
    当第三根木棒为斜边时,长度
    故第三根木棒的长度为米.
    故答案为:.
    本题考查勾股定理的应用,分类讨论问题是初中数学的重点,在中考中比较常见,不重不漏的进行分类是解题的关键.
    22、1
    【解析】
    如图(见解析),先根据正方形的性质可得,再利用勾股定理即可得.
    【详解】
    如图,四边形ABCD是边长为正方形

    由勾股定理得:
    即这个正方形的两条对角线相等,长为1
    故答案为:1.
    本题考查了正方形的性质、勾股定理,掌握理解正方形的性质是解题关键.
    23、(﹣3,2).
    【解析】
    过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.
    【详解】
    过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,如图所示:
    ∵四边形OABC是正方形,
    ∴OA=OC,∠AOC=90°,
    ∴∠COE+∠AOD=90°,
    又∵∠OAD+∠AOD=90°,
    ∴∠OAD=∠COE,
    在△AOD和△OCE中, ,
    ∴△AOD≌△OCE(AAS),
    ∴OE=AD=3,CE=OD=2,
    ∵点C在第二象限,
    ∴点C的坐标为(﹣3,2).
    故答案为(﹣3,2).
    本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)点A的坐标为, 点B的坐标为 (2)图形见解析(3)
    【解析】
    试题分析:令y=0,则x=2;令x=0,则y=1,即可得A,B两点的坐标;(2)连接AB即可得该函数的图象;(3)根据一次函数的性质即可求得结论.
    试题解析:
    (1)令,则;
    令,则.
    ∴点A的坐标为,
    点B的坐标为.
    (2)如图:
    (3)
    25、 (1)12;(2)5
    【解析】
    (1)先证明△ABD是等腰三角形,再根据三线合一得到,利用勾股定理求得AE的长;
    (2)利用三角线的中位线定理可得:,再进行求解.
    【详解】
    解:(1)

    ∵平分,

    根据勾股定理,得
    (2)由(1),知,
    又∵,
    ∴.
    考查了三角形中位线定理,解题关键是利用三线合一和三角形的中位线.
    26、(1),;(2)详见解析;(3)估计这次活动中爱心捐款额在的学生有1200人
    【解析】
    (1)先根据5≤x<l0的频数及其百分比求出样本容量,再根据各组频数之和等于总人数求出a的值,继而由百分比的概念求解可得;
    (2)根据所求数据补全图形即可得;
    (3)利用可以求得.
    【详解】
    (1)样本容量=3÷0.75%=40,∴,.
    (2)补图如下.
    (3)(人).
    答:估计这次活动中爱心捐款额在的学生有1200人.
    本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
    题号





    总分
    得分
    批阅人
    月收入(元)
    人数
    捐款额(元)
    频数
    百分比
    3
    7.5%
    7
    17.5%
    a
    b
    10
    25%
    6
    15%
    总计
    100%
    相关试卷

    2023-2024学年黑龙江省佳木斯市富锦市第四中学数学九年级第一学期期末检测模拟试题含答案: 这是一份2023-2024学年黑龙江省佳木斯市富锦市第四中学数学九年级第一学期期末检测模拟试题含答案,共8页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。

    2023-2024学年黑龙江省佳木斯市富锦市第四中学九年级数学第一学期期末联考试题含答案: 这是一份2023-2024学年黑龙江省佳木斯市富锦市第四中学九年级数学第一学期期末联考试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件是必然事件的是等内容,欢迎下载使用。

    2023-2024学年黑龙江省富锦市第四中学数学九年级第一学期期末达标测试试题含答案: 这是一份2023-2024学年黑龙江省富锦市第四中学数学九年级第一学期期末达标测试试题含答案,共7页。试卷主要包含了下列事件中是必然发生的事件是,下列事件是必然事件的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map