2023-2024学年黑龙江省富锦市第四中学数学九年级第一学期期末达标测试试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.在同一坐标系中,反比例函数y=与二次函数y=kx2+k(k≠0)的图象可能为( )
A.B.
C.D.
2.一个不透明的袋子装有除颜色外其余均相同的2个白球和个黑球.随机地从袋中摸出一个球记录下颜色,再放回袋中摇匀.大量重复试验后,发现摸出白球的频率稳定在1.2附近,则的值为( )
A.2B.4C.8D.11
3.下列运算中,结果正确的是( )
A.B.C.D.
4.如图,点C是线段AB的黄金分割点(AC>BC),下列结论错误的是( )
A.B.C.D.
5.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则t
anC的值是( )
A.2B.C.1D.
6.已知x1,x2是一元二次方程的两根,则x1+x2的值是( )
A.0B.2C.-2D.4
7.下列事件中是必然发生的事件是( )
A.抛两枚均匀的硬币,硬币落地后,都是正面朝上
B.射击运动员射击一次,命中十环
C.在地球上,抛出的篮球会下落
D.明天会下雨
8.下列事件是必然事件的是( )
A.通常加热到100℃,水沸腾
B.抛一枚硬币,正面朝上
C.明天会下雨
D.经过城市中某一有交通信号灯的路口,恰好遇到红灯
9.将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的左视图是( )
A.B.C.D.
10.如图,直线y1= x+1与双曲线y2=交于A(2,m)、B(﹣6,n)两点.则当y1<y2时,x的取值范围是( )
A.x>﹣6或0<x<2B.﹣6<x<0或x>2C.x<﹣6或0<x<2D.﹣6<x<2
二、填空题(每小题3分,共24分)
11.抛物线y=(x﹣2)2的顶点坐标是_____.
12.如图,△ABC中,∠C=90°,,D为AC上一点,∠BDC=45°,CD=6,则AB=_______.
13.如果在比例尺为1:1000000的地图上,A、B两地的图上距离是5.8cm,那么A、B两地的实际距离是_____km.
14.已知二次函数y=-x2+2x+5,当x________时,y随x的增大而增大
15.分解因式:___.
16.抛物线经过点,则这条抛物线的对称轴是直线__________.
17.某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是______米.
18.如图,在平面直角坐标系中,点O是边长为2的正方形ABCD的中心.函数y=(x﹣h)2的图象与正方形ABCD有公共点,则h的取值范围是_____.
三、解答题(共66分)
19.(10分)如图,在等腰中,,以为直径的,分别与和相交于点和,连接.
(1)求证:;
(2)求证:.
20.(6分)某小区新建成的住宅楼主体工程已经竣工,只剩下楼体外表需贴瓷砖,已知楼体外表的面积为.
(1)写出每块瓷砖的面积与所需的瓷砖块数(块)之间的函数关系式;
(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白、蓝三种颜色的瓷砖,每块瓷砖的面积都是,灰、白、蓝瓷砖使用比例是,则需要三种瓷砖各多少块?
21.(6分)某商场购进一种单价为10元的商品,根据市场调查发现:如果以单价20元售出,那么每天可卖出30个,每降价1元,每天可多卖出5个,若每个降价x(元),每天销售y(个),每天获得利润W(元).
(1)写出y与x的函数关系式;
(2)求W与x的函数关系式(不必写出x的取值范围)
(3)若降价x元(x不低于4元)时,销售这种商品每天获得的利润最大为多少元?
22.(8分)将矩形如图放置在平面直角坐标系中,为边上的一个动点,过点作交边于点,且,的长是方程的两个实数根,且.
(1)设,,求与的函数关系(不求的取值范围);
(2)当为的中点时,求直线的解析式;
(3)在(2)的条件下,平面内是否存在点,使得以,,,为顶点的四边形为平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.
23.(8分)(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE=CF;
(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:
如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面积.
24.(8分)小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)
25.(10分)某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?
26.(10分)己知抛物线与轴交于两点,与轴交于点,顶点为.
(1)求抛物线的表达式及点D的坐标;
(2)判断的形状.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、C
3、C
4、B
5、B
6、B
7、C
8、A
9、B
10、C
二、填空题(每小题3分,共24分)
11、(2,0).
12、1
13、58
14、x<1
15、.
16、
17、6000
18、
三、解答题(共66分)
19、(1)见解析;(2)见解析.
20、(1);(2)需要灰瓷砖125000块,白瓷砖250000块、蓝瓷砖为250000块
21、(1)y=30+5x(2)W=﹣5x2+20x+1;(3)降价4元(x不低于4元)时,销售这种商品每天获得的利润最大为1元
22、(1);(2)或;(3)存在.,,.
23、(1)证明见解析;(2)证明见解析;(3)1.
24、(5)(60≤x≤76);(6)当销售单价定为76元时,每月可获得最大利润,最大利润是6560元;(7)5.
25、每件降价4元
26、(1)顶点;(2)是直角三角形.
2023-2024学年黑龙江省哈尔滨市第十七中学数学九年级第一学期期末达标测试试题含答案: 这是一份2023-2024学年黑龙江省哈尔滨市第十七中学数学九年级第一学期期末达标测试试题含答案,共9页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件为必然事件的是等内容,欢迎下载使用。
2023-2024学年黑龙江省佳木斯市富锦市第四中学数学九年级第一学期期末检测模拟试题含答案: 这是一份2023-2024学年黑龙江省佳木斯市富锦市第四中学数学九年级第一学期期末检测模拟试题含答案,共8页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。
2023-2024学年扬州市梅岭中学数学九年级第一学期期末达标检测试题含答案: 这是一份2023-2024学年扬州市梅岭中学数学九年级第一学期期末达标检测试题含答案,共8页。