


2025届黑龙江省佳木斯市富锦市第四中学九上数学开学综合测试试题【含答案】
展开
这是一份2025届黑龙江省佳木斯市富锦市第四中学九上数学开学综合测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各点中在函数y=2x+2的图象上的是( )
A.(1,-2)B.(-1,-1)C.(0,2)D.(2,0)
2、(4分)下列命题中,正确的是( )
A.在三角形中,到三角形三边距离相等的点是三条边垂直平分线的交点
B.平行四边形是轴对称图形
C.三角形的中位线将三角形分成面积相等的两个部分
D.一组对边平行,一组对角相等的四边形是平行四边形
3、(4分)下列根式是最简二次根式的是( )
A.B.C.D.
4、(4分)一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是( )
A.B.C.D.
5、(4分)关于x的一元二次方程(m﹣1)x2﹣x+m2﹣1=0的一个根是0,则它的另一个根是( )
A.0B.C.﹣D.2
6、(4分)在同一直角坐标系中,函数y=-kx+k与y= (k≠0)的图象大致是( )
A.B.C.D.
7、(4分)已知 x=-1 是一元二次方程 x2+px+q=0 的一个根,则代数式 p-q 的值是( )
A.1B.-1C.2D.-2
8、(4分)如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OB的方向平移至△O′B′A′的位置,此时点B′的横坐标为5,则点A′的坐标为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠且高度恰好相同.此时测得墙上影子高,,(点A、E、C在同一直线上).已知小明身高EF是1.6m,则楼高AB为______m.
10、(4分)某车间5名工人日加工零件数依次为6、9、5、5、4,则这组数据的中位数是____.
11、(4分)如图(1),已知小正方形的面积为1,把它的各边延长一倍得新正方形;把正方形边长按原法延长一倍得到正方形如图(2);以此下去⋯⋯,则正方形的面积为_________________.
12、(4分)已知若关于x的分式方程有增根,则__________.
13、(4分)如图,两张等宽的纸条交叉叠放在一起,在重叠部分构成的四边形ABCD中,若AB=10,AC=12,则BD的长为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:如图,直线y=﹣x+6与坐标轴分别交于A、B两点,点C是线段AB上的一个动点,连接OC,以OC为边在它的左侧作正方形OCDE连接BE、CE.
(1)当点C横坐标为4时,求点E的坐标;
(2)若点C横坐标为t,△BCE的面积为S,请求出S关于t的函数解析式;
(3)当点C在线段AB上运动时,点E相应随之运动,请求出点E所在的函数解析式.
15、(8分)在平面直角坐标系xOy中,点P在函数的图象上,过P作直线轴于点A,交直线于点M,过M作直线轴于点B.交函数的图象于点Q。
(1)若点P的横坐标为1,写出点P的纵坐标,以及点M的坐标;
(2)若点P的横坐标为t,
①求点Q的坐标(用含t的式子表示)
②直接写出线段PQ的长(用含t的式子表示)
16、(8分)某次世界魔方大赛吸引世界各地共900名魔方爱好者参加,本次大赛首轮进行3×3阶魔方赛,组委会随机将爱好者平均分到30个区域,每个区域30名同时进行比赛,完成时间小于8秒的爱好者进入下一轮角逐;如图是3×3阶魔方赛A区域30名爱好者完成时间统计图,
(1)填空:A区域3×3阶魔方爱好者进入下一轮角逐的有______人.
(2)填空:若A区域30名爱好者完成时间为9秒的人数是7秒人数的3倍,
①a=______,b=______;
②完成时间的平均数是______秒,中位数是______秒,众数是______秒.
(3)若3×3阶魔方赛各个区域的情况大体一致,则根据A区域的统计结果估计在3×3阶魔方赛后进入下一轮角逐的约有多少人?
17、(10分)(1)计算:﹣|-2|﹣(2﹣π)0+(﹣1)2017
(2)先化简,再求值:2(a+)(a﹣)﹣a(a﹣)+6,其中a=﹣1
18、(10分)已知一次函数y=kx+b的图象经过点A(-3,-2)及点B(0,4).
(1)求此一次函数的解析式;
(2)当y=-5时求x的值;
(3)求此函数图象与两坐标轴所围成的三角形的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.若△BCD是等腰三角形,则四边形BDFC的面积为_______________。
20、(4分)若关于x的分式方程无解,则m的值为__________.
21、(4分)某种细菌的直径约为0.00 000 002米,用科学记数法表示该细菌的直径约为____米.
22、(4分)若关于x的方程-2=会产生增根,则k的值为________
23、(4分)平行四边形ABCD中,∠ABC的平分线将AD边分成的两部分的长分别为2和3,则平行四边形ABCD的周长是
_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,以△ABC的各边,在边BC的同侧分别作三个正方形ABDI,BCFE,ACHG.
(1)求证:△BDE≌△BAC;
(2)求证:四边形ADEG是平行四边形.
(3)直接回答下面两个问题,不必证明:
①当△ABC满足条件_____________________时,四边形ADEG是矩形.
②当△ABC满足条件_____________________时,四边形ADEG是正方形?
25、(10分)一家水果店以每千克2元的价格购进某种水果若干千克,然后以每千克4元的价格出售,每天可售出100千克,通过调查发现,这种水果每千克的售价每降低1元,每天可多售出200千克.
(1)若将这种水果每千克的售价降低元,则每天销售量是多少千克?(结果用含的代数式表示)
(2)若想每天盈利300元,且保证每天至少售出260千克,那么水果店需将每千克的售价降低多少元?
26、(12分)上午6:00时,甲船从M港出发,以80和速度向东航行。半小时后,乙船也由M港出发,以相同的速度向南航行。上午8:00时,甲、乙两船相距多远?要求画出符合题意的图形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
把选项中的点的坐标分别代入函数解析式进行判断即可.
【详解】
A. 当x=1时,y=2×1+2=4≠-2,故点(1,-2)不在函数图象上;
B. 当x=-1时,y=2×(-1)+2=0≠-1,故点(-1,-1)不在函数图象上;
C. 当x=0时,y=2×0+2=2,故点(0,2)在函数图象上;
D. 当x=2时,y=2×2+2=6≠0,故点(2,0)不在函数图象上;
故选C.
此题考查一次函数图象上点的坐标特征,解题关键在于把坐标代入解析式.
2、D
【解析】
由三角形的内心和外心性质得出选项A不正确;由平行四边形的性质得出选项B不正确;由三角形中位线定理得出选项C不正确;由平行四边形的判定得出选项D正确;即可得出结论.
【详解】
解:A.在三角形中,到三角形三边距离相等的点是三条边垂直平分线的交点;不正确;
B.平行四边形是轴对称图形;不正确;
C.三角形的中位线将三角形分成面积相等的两个部分;不正确;
D.一组对边平行,一组对角相等的四边形是平行四边形;正确;
故选:D.
本题考查了命题与定理、三角形的内心与外心、平行四边形的判定与性质以及三角形中位线定理;对各个命题进行正确判断是解题的关键.
3、A
【解析】
判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
【详解】
A、是最简二次根式,符合题意;
B、=,不符合题意;
C、=3,不符合题意;
D、=2,不符合题意;
故选A.
本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.
4、A
【解析】
由题意,甲走了1小时到了B地,在B地休息了半个小时,2小时正好走到C地,乙走了小时到了C地,在C地休息了小时.由此可知正确的图象是A.故选A.
5、C
【解析】
把代入方程得出,求出,代入方程,解方程即可求出方程的另一个根.
【详解】
解:把x=0代入方程(m﹣1)x2﹣x+m2﹣1=0得:m2﹣1=0,
解得:m=±1,
∵方程(m﹣1)x2﹣x+m2﹣1=0是一元二次方程,
∴m﹣1≠0,
解得:m≠1,
∴m=﹣1,
代入方程得:﹣2x2﹣x=0,
﹣x(2x+1)=0,
x1=0,x2=﹣,
即方程的另一个根为﹣,
故选:C.
本题考查了解一元二次方程,一元二次方程的解的定义的应用,关键是求出m的值.
6、C
【解析】
当k>0时,函数y=-kx+k的图象分布在第一、二、四象限,函数y= 的图象位于第一、三象限。
故本题正确答案为C.
7、A
【解析】
由一元二次方程的解的定义,把x=-1代入已知方程,化简整理即可求得结果.
【详解】
解:∵x=-1 是一元二次方程 x2+px+q=0 的一个根,
∴,即,
∴p-q =1.
故选A.
本题考查了一元二次方程的解的定义,此类问题的一般思路:见解代入,整理化简.
8、D
【解析】
根据等边三角形的性质和平移的性质即可得到结论.
【详解】
解:∵△OAB是等边三角形,
∵B的坐标为(2,0),
∴A(1,),
∵将△OAB沿直线OB的方向平移至△O′B′A′的位置,此时点B′的横坐标为5,
∴A′的坐标(4,),
故选:D.
本题考查了坐标与图形变化-平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.也考查了等边三角形的性质,含30°角的直角三角形的性质.求出点A′的坐标是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、21.2
【解析】
过点D作DN⊥AB,可得四边形CDME、ACDN是矩形,即可证明△DFM∽△DBN,从而得出BN,进而求得AB的长.
【详解】
解:过点D作DN⊥AB,垂足为N.交EF于M点,
∴四边形CDME、ACDN是矩形,
∴AN=ME=CD=1.2m,DN=AC=30m,DM=CE=0.6m,
∴MF=EF-ME=1.6-1.2=0.4m,
依题意知EF∥AB,
∴△DFM∽△DBN, ,
即:,解得:BN=20,
∴AB=BN+AN=20+1.2=21.2,
答:楼高为AB为21.2米.
本题考查了平行投影和相似三角形的应用,是中考常见题型,要熟练掌握.
10、1
【解析】
根据中位数的定义即可得.
【详解】
将这组数据按从小到大进行排序为
则其中位数是1
故答案为:1.
本题考查了中位数的定义,熟记定义是解题关键.
11、1
【解析】
根据条件计算出图(1) 正方形A1B1C1D1的面积,同理求出正方形A2B2C2D2的面积,由此找出规律即可求出答案.
【详解】
图(1)中正方形ABCD的面积为1,把各边延长一倍后,每个小三角形的面积也为1,
所以正方形A1B1C1D1的面积为5,
图(2)中正方形A1B1C1D1的面积为5,把各边延长一倍后,每个小三角形的面积也为5,
所以正方形A2B2C2D2的面积为52=25,
由此可得正方形A5B5C5D5的面积为55=1.
本题考查图形规律问题,关键在于列出各图形面积找出规律.
12、1
【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-2=0,所以增根是x=2,把增根代入化为整式方程的方程即可求出未知字母的值.
【详解】
方程两边都乘(x-2),得
1+(x-2)=k
∵原方程有增根,
∴最简公分母x-2=0,即增根是x=2,
把x=2代入整式方程,得k=1.
故答案为1.
增根问题可按如下步骤进行:
①根据最简公分母确定增根的值;
②化分式方程为整式方程;
③把增根代入整式方程即可求得相关字母的值.
13、1
【解析】
过点作于,于,设、交点为,首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.然后依据勾股定理求得的长,从而可得到的长.
【详解】
解:过点作于,于,设、交点为.
两条纸条宽度相同,
.
,,
四边形是平行四边形.
.
又.
,
四边形是菱形;
,,.
.
.
故答案为1.
本题考查了菱形的判定与性质、平行四边形的判定与性质、勾股定理以及四边形的面积,证得四边形为菱形是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)(﹣2,4);(2)S=﹣t2+1t;(3)y=x+1
【解析】
(1)作CF⊥OA于F,EG⊥x轴于G.只要证明△CFO≌△OGE即可解决问题;
(2)只要证明△EOB≌△COA,可得BE=AC,∠OBE=∠OAC=45°,推出∠EBC=90°,即EB⊥AB,由C(t,﹣t+1),可得BC=t,AC=BE=(1﹣t),根据S=•BC•EB,计算即可;
(3)由(1)可知E(t﹣1,t),设x=1﹣t,y=t,可得y=x+1.
【详解】
解:(1)作CF⊥OA于F,EG⊥x轴于G.
∴∠CFO=∠EGO=90°,
令x=4,y=﹣4+1=2,
∴C(4,2),
∴CF=2,OF=4,
∵四边形OCDE是正方形,
∴OC=OE,OC⊥OE,
∵OC⊥OE,
∴∠COF+∠EOG=90°,∠COF+∠OCF=90°,
∴∠EOG=∠OCF,
∴△CFO≌△OGE,
∴OG=OF=4,OG=CF=2,
∴G(﹣2,4).
(2)∵直线y=﹣x+1交y轴于B,
∴令x=0得到y=1,
∴B(0,1),
令y=0,得到x=1,
∴A(1,0),
∴OA=OB=1,∠OAB=∠OBA=45°,
∵∠AOB=∠EOC=90°,
∴∠EOB=∠COA,
∵OE=OC,
∴△EOB≌△COA,
∴BE=AC,∠OBE=∠OAC=45°,
∴∠EBC=90°,即EB⊥AB,
∵C(t,﹣t+1),
∴BC=t,AC=BE=(1﹣t),
∴S=•BC•EB=×t•(1﹣t)=﹣t2+1t.
(3)当点C在线段AB上运动时,由(1)可知E(t﹣1,t),
设x=1﹣t,y=t,
∴t=x+1,
∴y=x+1.
故答案为(1)(﹣2,4);(2)S=﹣t2+1t;(3)y=x+1.
本题考查一次函数综合题、全等三角形的判定和性质、正方形的性质、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
15、(1)点P的纵坐标为4,点M的坐标为;(2)①;②
【解析】
(1)直接将点P的横坐标代入中,得到点P的纵坐标,由点M在PA上,PA⊥x轴,即可得到M的坐标;
(2)①由点P的横坐标为t,得到M的横坐标为t,因为M在y=x上,得到M的坐标为(t,t),从而得到Q的纵坐标,代入反比例函数解析式即可的到点Q的坐标;
②连接PQ,很快就发现PQ是直角三角形PMQ的斜边,直接利用勾股定理即可得到答案.
【详解】
解: (1)∵点P在函数的图象上,点P的横坐标为1,
∴,
∴点P的纵坐标为4,
∵点M在PA上,PA⊥x轴,且点P的横坐标为1,
∴点M的横坐标为1,
又∵点M在直线y=x上,
∴点M的坐标为(1,1),
故答案为点P的纵坐标为4,点M的坐标为(1,1);
(2) ①∵点P的横坐标为t,点P在函数的图象上,
∴点P的坐标为,
∵直线PA⊥x轴,交直线y=x于点M,
∴点M的坐标为,
∵直线MB⊥y轴,交函数的图象于点Q,
∴点Q的坐标为;
②连接PQ,
∵P的坐标为,M的坐标为,Q的坐标为,
∴PM=,MQ=,
∴PQ=,
故答案为线段PQ的长为.
本题考查的知识点是正比例函数的图像和性质,反比例函数的图像和性质,反比例函数的应用,平面直角坐标系中点的坐标,点到坐标及其原点的距离和勾股定理的应用,掌握好正比例函数与反比例函数的点的坐标特征是解题的关键.
16、(1)4;(2)①1,9;②8.8,9,10;(3)估计在3×3阶魔方赛后进入下一轮角逐的约有120人.
【解析】
(1)由图知1人6秒,3人1秒,小于8秒的爱好者共有4人;
(2)①根据A区域30名爱好者完成时间为9秒的人数是1秒人数的3倍,可得b=3×3=9,再用数据总数30减去其余各组人数得出a的值;②利用加权平均数的计算公式列式计算求出平均数,再根据中位数、众数的定义求解;
(3)先求出样本中进入下一轮角逐的百分比,再乘以900即可.
【详解】
解:(1)A区域3×3阶魔方爱好者进入下一轮角逐的有1+3=4(人).
故答案为4;
(2)①由题意,可得b=3×3=9,
则a=30-4-9-10=1.
故答案为1,9;
②完成时间的平均数是:=8.8(秒);
按从小到大的顺序排列后,第15、16个数据都是9,所以中位数是=9(秒);
数据10秒出现了10次,此时最多,所以众数是10秒.
故答案为8.8,9,10;
(3)900×=120(人).
答:估计在3×3阶魔方赛后进入下一轮角逐的约有120人.
本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.也考查了平均数、中位数、众数的意义以及利用样本估计总体.
17、(1)﹣1;(2)原式=a2+a=5﹣3.
【解析】
(1)根据二次根式的性质、绝对值的性质、零指数幂的性质及乘方的定义分别计算各项后,再合并即可;(2)先把代数式2(a+)(a﹣)﹣a(a﹣)+6化为最简,再代入求值即可.
【详解】
(1)原式=3﹣2﹣×1-1
=﹣﹣1
=﹣1;
(2)原式=2a2﹣6﹣a2+a+6
=a2+a
当a=﹣1时,原式=(﹣1)2+(﹣1)=5﹣3.
本题题考查了实数及二次根式的运算,熟练掌握运算法则是解本题的关键.
18、 (1) y=2x+4;(2);(3)4.
【解析】
试题分析:
(1)把点A、B的坐标代入列方程组求得的值即可求得一次函数的解析式;
(2)把代入(1)中所求得的解析式中,解方程可求得对应的的值;
(3)由解析式求得直线与轴的交点坐标,结合点B和原点就可求得直线与坐标轴围成的三角形的面积.
试题解析:
(1)将A(-3,-2),B(0,4)分别代入y=kx+b得 ,解得: ,
∴一次函数的解析式为:y=2x+4.
(2)在y=2x+4中,当y=-5时,2x+4=-5,解得x=-4.5;
(3)设直线和x轴交于点C,
∵在y=2x+4中,当y=0时,2x+4=0,解得x=-2,
∴点C(-2,0),
∴OC=2,
又∵OB=4,
∴S△OBC=OBOC=.
点睛:一次函数图象与坐标轴围成的三角形就是以图象与两坐标轴的交点和原点为顶点的直角三角形,因此只需由解析式求出图象与两坐标轴的交点坐标即可求此三角形的面积.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、5或1.
【解析】
先证明四边形BDFC是平行四边形;当△BCD是等腰三角形求面积时,需分①BC=BD时,利用勾股定理列式求出AB,然后利用平行四边形的面积公式列式计算即可得解;②BC=CD时,过点C作CG⊥AF于G,判断出四边形AGCB是矩形,再根据矩形的对边相等可得AG=BC=5,然后求出DG=3,利用勾股定理列式求出CG,然后利用平行四边形的面积列式计算即可得解;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=4,矛盾.
【详解】
证明:∵∠A=∠ABC=90°,
∴BC∥AD,
∴∠CBE=∠DFE,
在△BEC与△FED中,
∴△BEC≌△FED,
∴BE=FE,
又∵E是边CD的中点,
∴CE=DE,
∴四边形BDFC是平行四边形;
(1)BC=BD=5时,由勾股定理得,AB===,
所以,四边形BDFC的面积=5×=5 ;
(2)BC=CD=5时,过点C作CG⊥AF于G,则四边形AGCB是矩形,
所以,AG=BC=5,
所以,DG=AG-AD=5-2=3,由勾股定理得,CG===4,
所以,四边形BDFC的面积=4×5=1;
(3)BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=4,矛盾,此时不成立;
综上所述,四边形BDFC的面积是5或1.
故答案为:5或1.
本题考查平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.
20、
【解析】
由分式方程无解得到x=5,将其代入化简后的整式方程即可求出答案.
【详解】
将方程去分母得到:x-2(x-5)=-m,即10-x=-m,
∵分式方程无解,
∴x=5,
将x=5代入10-x=-m中,解得m=-5,
故答案为:-5.
此题考查分式方程无解的情况,正确理解分式方程无解的性质得到整式方程的解是解题的关键.
21、
【解析】
试题解析:0.00 000 002=2×10-8.
点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
22、
【解析】
根据方程有增根可得x=3,把-2=去分母后,再把x=3代入即可求出k的值.
【详解】
∵关于x的方程-2=会产生增根,
∴x-3=0,
∴x=3.
把-2=的两边都乘以x-3得,
x-2(x-3)=-k,
把x=3代入,得
3=-k,
∴k=-3.
故答案为:-3.
本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.
23、14或1
【解析】
由平行四边形ABCD推出∠AEB=∠CBE,由已知得到∠ABE=∠CBE,推出AB=AE,分两种情况(1)当AE=2时,求出AB的长;(2)当AE=3时,求出AB的长,进一步求出平行四边形的周长.
解:∵四边形ABCD是平行四边形,
∴AD=BC,AB=CD,AD∥BC,
∴∠AEB=∠CBE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠ABE=∠AEB,
∴AB=AE,
∵∠ABC的平分线将AD边分成的两部分的长分别为2和3两部分,
当AE=2时,则平行四边形ABCD的周长是14;
(2)当AE=3时,则平行四边形ABCD的周长是1;
故答案为14 或1.
“点睛”此题考查了平行四边形的性质:平行四边形的对边相等且平行.注意当有平行线和角平分线出现时,会有等腰三角形出现,解题时还要注意分类讨论思想的应用.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析;(3)①∠BAC=135°;②∠BAC=135°且AC=
【解析】
(1)根据全等三角形的判定定理SAS证得△BDE≌△BAC;
(2)由△BDE≌△BAC,可得全等三角形的对应边DE=AG.然后利用正方形对角线的性质、周角的定义推知∠EDA+∠DAG=180°,易证ED∥GA;最后由“一组对边平行且相等”的判定定理证得结论;
(3)①根据“矩形的内角都是直角”易证∠DAG=90°.然后由周角的定义求得∠BAC=135°;
②由“正方形的内角都是直角,四条边都相等”易证∠DAG=90°,且AG=AD.由正方形ABDI和正方形ACHG的性质证得:ACAB.
【详解】
(1)∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°,∴∠ABC=∠EBD(同为∠EBA的余角).
在△BDE和△BAC中,∵,∴△BDE≌△BAC(SAS);
(2)∵△BDE≌△BAC,∴DE=AC=AG,∠BAC=∠BDE.
∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.
∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC,∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°,∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).
(3)①当四边形ADEG是矩形时,∠DAG=90°.
则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,即当∠BAC=135°时,平行四边形ADEG是矩形;
②当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.
由①知,当∠DAG=90°时,∠BAC=135°.
∵四边形ABDI是正方形,∴ADAB.
又∵四边形ACHG是正方形,∴AC=AG,∴ACAB,∴当∠BAC=135°且ACAB时,四边形ADEG是正方形.
本题综合考查了正方形的判定与性质,全等三角形的判定与性质,平行四边形的判定与性质等知识点.解题时,注意利用隐含在题干中的已知条件:周角是360°.
25、(1)每天销售量是千克;(2)水果店需将每千克的售价降低1元.
【解析】
(1)销售量原来销售量下降销售量,据此列式即可;
(2)根据销售量每千克利润总利润列出方程求解即可.
【详解】
解:(1)每天的销售量是(千克).
故每天销售量是千克;
(2)设这种水果每斤售价降低元,根据题意得:,
解得:,,
当时,销售量是;
当时,销售量是(斤.
每天至少售出260斤,
.
答:水果店需将每千克的售价降低1元.
考查了一元二次方程的应用,本题考查理解题意的能力,第一问关键求出每千克的利润,求出总销售量.第二问,根据售价和销售量的关系,以利润作为等量关系列方程求解.
26、两船相距200,画图见解析.
【解析】
根据题意画出图形,利用勾股定理求解即可.
【详解】
解:如图所示,
∵甲船从港口出发,以80的速度向东行驶,
∴MA=80×2=160(km),
∵半个小时后,乙船也由同一港口出发,以相同的速度向南航行,
∴MB=80×1.5=120(km),
∴(km),
∴上午8:00时,甲、乙两船相距200km.
本题考查的是勾股定理的应用,根据题意画出图形,利用数形结合求解是解答此题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2024年黑龙江省佳木斯市富锦市第四中学数学九年级第一学期开学统考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年黑龙江省佳木斯市富锦市第四中学数学九年级第一学期期末检测模拟试题含答案,共8页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。
这是一份2023-2024学年黑龙江省佳木斯市富锦市第四中学数学八上期末监测模拟试题含答案,共7页。试卷主要包含了计算的结果是,下列四个命题中,真命题有等内容,欢迎下载使用。