|试卷下载
搜索
    上传资料 赚现金
    2024-2025学年江苏省江阴市青阳初级中学数学九上开学教学质量检测试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年江苏省江阴市青阳初级中学数学九上开学教学质量检测试题【含答案】01
    2024-2025学年江苏省江阴市青阳初级中学数学九上开学教学质量检测试题【含答案】02
    2024-2025学年江苏省江阴市青阳初级中学数学九上开学教学质量检测试题【含答案】03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年江苏省江阴市青阳初级中学数学九上开学教学质量检测试题【含答案】

    展开
    这是一份2024-2025学年江苏省江阴市青阳初级中学数学九上开学教学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是( )
    A.AC⊥BDB.AD=CDC.AB=BCD.AC=BD
    2、(4分)如果点P(-2,b)和点Q(a,-3)关于x轴对称,则的值是( )
    A.1B.-1C.5D.-5
    3、(4分)如图,平行四边形ABCD中,BD⊥AD,∠A=30°,BD=4,则CD的长为( )
    A.2B.4C.4D.8
    4、(4分)已知x=,y=,则x2+xy+y2的值为( )
    A.2B.4C.5D.7
    5、(4分)点A,B,C,D都在如图所示的由正方形组成的网格图中,且线段CD与线段AB成位似图形,则位似中心为( )
    A.点EB.点F
    C.点HD.点G
    6、(4分)如图1,四边形中,,.动点从点出发沿折线方向以单位/秒的速度匀速运动,在整个运动过程中,的面积与运动时间(秒)的函数图像如图2所示,则AD等于( )
    A.10B.C.8D.
    7、(4分)若一个多边形的内角和与外角和总共是900°,则此多边形是( )
    A.四边形B.五边形C.六边形D.七边形
    8、(4分)若一个正多边形的每一个外角都等于40°,则它是( ).
    A.正九边形B.正十边形C.正十一边形D.正十二边形
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知,当=-1时,函数值为_____;
    10、(4分)已知直线在轴上的截距是-2,且与直线平行,那么该直线的解析是______
    11、(4分)如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为_____.
    12、(4分)如图,△ACB和△DCE都是等腰直角三角形,CA=CB,CD=CE,∠ACB=∠DCE=90°,△ACB的顶点A在△DCE的斜边DE上,且AD=,AE=3,则AC=_____.
    13、(4分)若一个多边形的每一个内角都是144°,则这个多边形的是边数为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在菱形ABCD中,作于E,BF⊥CD于F,求证:.
    15、(8分)小黄人在与同伴们研究日历时发现了一个有趣的规律:
    若用字母n表示平行四边形中左上角位置的数字,请你用含n的式子写出小黄人发现的规律,并加以证明.
    16、(8分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,AB=5,AD=3,E是AB上的一点,F是AD上的一点,连接BO和FO.
    (1)当点E为AB中点时,求EO的长度;
    (2)求线段AO的取值范围;
    (3)当EO⊥FO时,连接EF.求证:BE+DF>EF.
    17、(10分)(江苏省泰州市海陵区2018年中考适应性训练数学试题) 如图,直线AB:y=−x−b分别与x、y轴交于A(6,0)、B两点,过点B的直线交x轴的负半轴于点C,且OB∶OC=3∶1.
    (1)求点B的坐标;
    (2)求直线BC的函数关系式;
    (3)若点P(m,2)在△ABC的内部,求m的取值范围.
    18、(10分)化简:÷(-a-2),并代入一个你喜欢的值求值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,已知正方形纸片ABCD,M,N分别是AD、BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠BPN=_____度.
    20、(4分)比较大小:_______2(填“>”或“<”).
    21、(4分)已知平面直角坐标系中A.B两点坐标如图,若PQ是一条在x轴上活动的线段,且PQ=1,求当BP+PQ+QA最小时,点Q的坐标___.
    22、(4分)因式分解:2a2﹣8= .
    23、(4分)当x=________时,分式的值为0
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F在DE延长线上,且AF=AE.求证:四边形ACEF是平行四边形.

    25、(10分)定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在中,,,点、分别在边、上,,连接、,点、、分别为、、的中点,且连接、.
    观察猜想
    (1)线段与 “等垂线段”(填“是”或“不是”)
    猜想论证
    (2)绕点按逆时针方向旋转到图2所示的位置,连接,,试判断与是否为“等垂线段”,并说明理由.
    拓展延伸
    (3)把绕点在平面内自由旋转,若,,请直接写出与的积的最大值.
    26、(12分)如图1,在直角坐标系中,一次函数的图象l与y轴交于点A(0 , 2),与一次函数y=x﹣3的图象l交于点E(m ,﹣5).
    (1)m=__________;
    (2)直线l与x轴交于点B,直线l与y轴交于点C,求四边形OBEC的面积;
    (3)如图2,已知矩形MNPQ,PQ=2,NP=1,M(a,1),矩形MNPQ的边PQ在x轴上平移,若矩形MNPQ与直线l或l有交点,直接写出a的取值范围_____________________________
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据菱形的判定方法结合各选项的条件逐一进行判断即可得.
    【详解】
    A、对角线互相垂直的平行四边形是菱形,故A选项不符合题意;
    B、有一组邻边相等的平行四边形是菱形,故B选项不符合题意;
    C、有一组邻边相等的平行四边形是菱形,故C选项不符合题意;
    D、对角线相等的平行四边形是矩形,故D选项符合题意,
    故选D.
    本题考查了菱形的判定,熟练掌握菱形的判定方法是解答本题的关键.
    2、A
    【解析】
    关于x轴对称,则P、Q横坐标相同,纵坐标互为相反数,即可求解.
    【详解】
    ∵点P(-2,b)和点Q(a,-3)关于x轴对称
    ∴a =-2,b=3

    故选A.
    本题考查坐标系中点的对称,熟记口诀“关于谁对称谁不变,另一个变号”是关键.
    3、D
    【解析】
    根据30°所对的直角边是斜边的一半即可求出AB,然后利用平行四边形的性质即可求出结论.
    【详解】
    解:∵BD⊥AD,
    ∴△ABD为直角三角形,
    在Rt△ABD中,BD=4,∠A=30°,
    ∴AB=2BD=8,
    ∵四边形ABCD为平行四边形,
    ∴CD=AB=8,
    故选:D.
    此题考查的是直角三角形的性质和平行四边形的性质,掌握30°所对的直角边是斜边的一半和平行四边形的对边相等是解决此题的关键.
    4、B
    【解析】
    试题分析:根据二次根式的运算法则进行运算即可.
    试题解析:
    .
    故应选B
    考点:1.二次根式的混合运算;2.求代数式的值.
    5、B
    【解析】
    根据位似图形对应点连线过位似中心判断即可.
    【详解】
    解:点A、B、C、D都在如图所示的由正方形组成的网格图中,且线段CD与线段AB成位似图形,则位似中心为点F,
    故选:B.
    此题考查位似变换,解题关键是弄清位似中心的定义.
    6、B
    【解析】
    当t=5时,点P到达A处,即AB=5;当s=40时,点P到达点D处,即可求解。
    【详解】
    当t=5时,点P到达A处,即AB=5,
    过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,
    ∵AC=AD,∴DE=CE=CD,
    当s=40时,点P到达点D处,则S=CD⋅BC=(2AB) BC=5BC=40
    则BC=8,
    AD=AC=
    故选:B.
    本题考查一次函数,熟练掌握计算法则是解题关键.
    7、B
    【解析】
    本题需先根据已知条件,再根据多边形的外角和是360°,解出内角和的度数,再根据内角和度数的计算公式即可求出边数
    【详解】
    解:∵多边形的内角和与外角和的总和为900°,
    多边形的外角和是360°,
    ∴多边形的内角和是900°﹣360°=140°,
    ∴多边形的边数是:
    140°÷180°+2
    =3+2
    =1.
    故选B.
    本题主要考查了多边形内角与外角,在解题时要根据外角和的度数以及内角和度数的计算公式解出本题即可.
    8、A
    【解析】
    根据多边形的外角和是360度即可求得外角的个数,即多边形的边数.
    【详解】
    解:∵360÷40=1,
    ∴这个正多边形的边数是1.
    故选:A.
    本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、-1
    【解析】
    将x=-1,代入y=2x+1中进行计算即可;
    【详解】
    将x=-1代入y=2x+1,得y=-1;
    此题考查求函数值,解题的关键是将x的值代入进行计算;
    10、
    【解析】
    【分析】根据一次函数的性质可求得.对于直线在轴上的截距是b;k是斜率,决定直线的位置关系.
    【详解】因为,已知直线在轴上的截距是-2,
    所以,b=-2.
    又直线与直线平行,
    所以,k=3.
    故答案为:
    【点睛】本题考核知识点:一次函数. 解题关键点:熟记一次函数解析式中系数的意义.
    11、1
    【解析】
    根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.
    【详解】
    在Rt△ABC中,∠A=30°,BC=1,
    ∴AB=2BC=2,
    ∵点D,E分别是直角边BC,AC的中点,
    ∴DE=AB=1,
    故答案为:1.
    本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
    12、
    【解析】
    由等腰三角形的性质可得AC=BC,DC=EC,∠DCE=∠ACB=90°,∠D=∠CED=45°,可证△ADC≌△BEC,可得AD=BE=,∠D=∠BEC=45°,由勾股定理可求AB=2,即可求AC的长。
    【详解】
    证明:如图,连接BE,
    ∵△ACB和△DCE都是等腰直角三角形
    ∴AC=BC,DC=EC,∠DCE=∠ACB=90°,∠D=∠CED=45°
    ∴∠DCA=∠BCE,且AC=BC,DC=EC,
    ∴△ADC≌△BEC(SAS)
    ∴AD=BE=,∠D=∠BEC=45°,
    ∴∠AEB=90°
    ∴AB==2
    ∵AB=BC
    ∴BC=,因为△ACB是等腰直角三角形,所以BC=AC=.
    本题考查等腰直角三角形的性质、全等三角形的判定和性质,解题的关键是掌握等腰直角三角形的性质、全等三角形的判定和性质.
    13、1
    【解析】
    先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.
    【详解】
    180°-144°=36°,
    360°÷36°=1,
    ∴这个多边形的边数是1,
    故答案为:1.
    本题考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.
    三、解答题(本大题共5个小题,共48分)
    14、见解析
    【解析】
    由菱形的性质可得,,然后根据角角边判定,进而得到.
    【详解】
    证明:∵菱形ABCD,
    ∴,,
    ∵,,
    ∴,
    在与中,

    ∴,
    ∴.
    本题考查菱形的性质和全等三角形的判定与性质,根据菱形的性质得到全等条件是解题的关键.
    15、,证明见解析
    【解析】
    设左上角的数字为x,则右上角的数字为x+1;左下角的数字为x+6;右下角的数字为x+7,根据题意将四个数交叉相乘进行整式乘法的运算并化简即可.
    【详解】
    解:规律为
    证明:∵
    =
    =6

    本题考查整式的乘法运算,根据题意找到数字间的等量关系及多项式的乘法法则,正确计算是本题的解题关键.
    16、(1);(2)1<AO<4;(3)见解析.
    【解析】
    (1) O是中点,E是中点,所以OE=BC=;
    (2) 在△ACD中利用三角形的第三边长小于两边之和,大于两边只差;
    (3) 延长FO交BC于G点,就可以将BE,FD,EF放在一个三角形中,利用三角形两边之和大于第三边即可.
    【详解】
    (1)解:∵四边形ABCD为平行四边形,
    ∴BC=AD=3,OA=OC,
    ∵点E为AB中点,
    ∴OE为△ABC的中位线,
    ∴OE=BC=;
    (2)解:在△ABC中,∵AB﹣BC<AC<AB+BC,
    而OA=OC,
    ∴5﹣3<2AO<5+3,
    ∴1<AO<4;
    (3)证明:延长FO交BC于G点,连接EG,如图,
    ∵四边形ABCD为平行四边形,
    ∴OB=OD,BC∥AD,
    ∴∠OBG=∠ODF,
    在△OBG和△ODF中

    ∴△OBG≌△ODF,
    ∴BG=DF,OG=OF,
    ∵EO⊥OF,
    ∴EG=EF,
    在△BEG中,BE+BG>EG,
    ∴BE+FD>EF.
    本题主要考查中位线的性质,以及通过构造新的全等三角形,应用三角形两边之和大于第三边性质来比较线段的关系.
    17、(1)(0,6);(2)y=3x+6;(3)−【解析】
    【分析】(1)直接将点的坐标代入可得;(2)用待定系数法可得;(3)把y=2分别代入直线AB和直线BC的解析式,确定关键点的坐标,结合图形,从而求出m的取值范围.
    【详解】(1)将点A(6,0)代入直线AB的解析式可得:0=−6−b,
    解得:b=−6,
    ∴直线AB的解析式为y=−x+6,∴B点坐标为(0,6).
    (2)∵OB∶OC=3∶1,
    ∴OC=2,
    ∴点C的坐标为(−2,0),
    设BC的解析式是y=kx+6,则0=−2k+6,解得:k=3,
    ∴直线BC的解析式是:y=3x+6.
    (3)把y=2代入y=−x+6得x=4;把y=2代入y=3x+6中得x=,
    结合图象可知m的取值范围是.
    故正确答案为:(1)(0,6);(2)y=3x+6;(3)−【点睛】本题考核知识点:一次函数的图象.本题解题关键是:熟练运用待定系数法求解析式,求关键点坐标,再数结合,可分析出答案.
    18、,.
    【解析】
    分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,最后将除法改成乘法进行约分化简,最后选择a的值时,不能取a=2和a=±1.
    详解:原式=,
    当a=1时,原式=.
    点睛:本题主要考查的是分式的化简求值问题,属于基础题型.学会因式分解是解决分式问题的基本要求.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据折叠的性质知:可知:BN=BP,再根据∠BNP=90°即可求得∠BPN的值.
    【详解】
    根据折叠的性质知:BP=BC,
    ∴BN=BC=BP,
    ∵∠BNP=90°,
    ∴∠BPN=1°,
    故答案为:1.
    本题考查了正方形的性质、翻折变换(折叠问题)等知识,熟练掌握相关的性质及定理是解题的关键.
    20、<
    【解析】
    试题解析:

    故答案为:
    21、(,0);
    【解析】
    如图把点向右平移1个单位得到,作点关于轴的对称点,连接,与轴的交点即为点,此时的值最小,求出直线的解析式,即可解决问题.
    【详解】
    如图把点向右平移1个单位得到,作点关于轴的对称点,连接,与轴的交点即为点,此时的值最小,
    设最小的解析式为,则有,解得,
    直线的解析式为,
    令,得到,
    .
    故答案为:.
    本题考查轴对称最短问题、坐标与图形的性质、一次函数的应用等知识,解题的关键是学会利用对称解决最短问题,学会构建一次函数解决交点问题,属于中考常考题型.
    22、2(a+2)(a-2).
    【解析】
    2a2-8=2(a2-4)=2(a+2)(a-2).
    故答案为2(a+2)(a-2)
    考点:因式分解.
    23、1
    【解析】
    根据分式值为0的条件直接求解即可.
    【详解】
    解:令且

    即时,分式的值为0.
    故答案为:1.
    本题考查了分式的值,分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.
    二、解答题(本大题共3个小题,共30分)
    24、证明见解析
    【解析】
    分析:根据直角三角形斜边上的中线等于斜边的一半可得CE=AE=BE,从而得到AF=CE,再根据等腰三角形三线合一的性质可得∠1=∠2,根据等边对等角可得然后∠F=∠3,然后求出∠2=∠F,再根据同位角相等,两直线平行求出CE∥AF,然后利用一组对边平行且相等的四边形是平行四边形证明.
    详解:∵∠ACB=90°,E是BA的中点,∴CE=AE=BE,
    ∵AF=AE,∴AF=CE,
    在△BEC中,∵BE=CE且D是BC的中点,∴ED是等腰△BEC底边上的中线,∴ED也是等腰△BEC的顶角平分线,∴∠1=∠2,
    ∵AF=AE,∴∠F=∠3,
    ∵∠1=∠3,∴∠2=∠F,∴CE∥AF,
    又∵CE=AF,∴四边形ACEF是平行四边形.

    点睛:本题考查了平行四边形的判定,等边三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半,熟记各性质与判定方法是解题的关键.
    25、(1)是;(2)是,理由详见解析;(3)49
    【解析】
    (1)根据题意,利用等腰三角形和三角形中位线定理得出,∠MPN=90°判定即可;
    (2)由旋转和三角形中位线的性质得出,再由中位线定理进行等角转换,得出∠MPN=90°,即可判定;
    (3)由题意,得出最大时,与的积最大,点在的延长线上,再由(1)(2)结论,得出与的积的最大值.
    【详解】
    (1)是;
    ∵,
    ∴DB=EC,∠ADE=∠AED=∠B=∠ACB
    ∴DE∥BC
    ∴∠EDC=∠DCB
    ∵点、、分别为、、的中点
    ∴PM∥EC,PN∥BD,
    ∴,∠DPM=∠DCE,∠PNC=∠DBC
    ∵∠DPN=∠PNC+∠DCB
    ∴∠MPN=∠DPM+∠DPN=∠ACD+∠DCB+∠B=180°-90°=90°
    ∴线段与是“等垂线段”;
    (2)由旋转知
    ∵,
    ∴≌()
    ∴,
    利用三角形的中位线得,,

    由中位线定理可得,
    ∴,





    ∴与为“等垂线段”;
    (3)与的积的最大值为49;
    由(1)(2)知,
    ∴最大时,与的积最大
    ∴点在的延长线上,如图所示:


    ∴.
    此题主要考查等腰三角形以及三角形中位线的性质,熟练掌握,即可解题.
    26、(1)-2;(2);(3)≤a≤或3≤a≤6.
    【解析】
    (1)根据点E在一次函数图象上,可求出m的值;
    (2)利用待定系数法即可求出直线l1的函数解析式,得出点B、C的坐标,利用S四边形OBEC=S△OBE+S△OCE即可得解;
    (3)分别求出矩形MNPQ在平移过程中,当点Q在l1上、点N在l1上、点Q在l2上、点N在l2上时a的值,即可得解.
    【详解】
    解:(1)∵点E(m,−5)在一次函数y=x−3图象上,
    ∴m−3=−5,
    ∴m=−2;
    (2)设直线l1的表达式为y=kx+b(k≠0),
    ∵直线l1过点A(0,2)和E(−2,−5),
    ∴ ,解得,
    ∴直线l1的表达式为y=x+2,
    当y=x+2=0时,x=
    ∴B点坐标为(,0),C点坐标为(0,−3),
    ∴S四边形OBEC=S△OBE+S△OCE=××5+×2×3=;
    (3)当矩形MNPQ的顶点Q在l1上时,a的值为;
    矩形MNPQ向右平移,当点N在l1上时,x+2=1,解得x=,即点N(,1),
    ∴a的值为+2=;
    矩形MNPQ继续向右平移,当点Q在l2上时,a的值为3,
    矩形MNPQ继续向右平移,当点N在l2上时,x−3=1,解得x=4,即点N(4,1),
    ∴a的值为4+2=6,
    综上所述,当≤a≤或3≤a≤6时,矩形MNPQ与直线l1或l2有交点.
    本题主要考查求一次函数解析式,两条直线相交、图形的平移等知识的综合应用,在解决第(3)小题时,只要求出各临界点时a的值,就可以得到a的取值范围.
    题号





    总分
    得分
    相关试卷

    2024-2025学年江苏省阜宁县数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年江苏省阜宁县数学九上开学教学质量检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省东台市实验中学数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年江苏省东台市实验中学数学九上开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年湖南省涟源市六亩塘中学数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年湖南省涟源市六亩塘中学数学九上开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map