2024-2025学年江苏省苏州实验初级中学数学九年级第一学期开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知为矩形的对角线,则图中与一定不相等的是( )
A.B.C.D.
2、(4分)四边形的四条边长依次为a、b、c、d,其中a,c为对边且满足,那么这个四边形一定是( )
A.任意四边形B.对角线相等的四边形
C.平行四边形D.对角线垂直的四边形
3、(4分)医学研究发现一种新病毒的直径约为0.000043毫米,则这个数用科学记数法表示为( )
A.0.43×B.0.43×C.4.3×D.4.3×
4、(4分)已知点的坐标为,则点在第( )象限
A.一B.二C.三D.四
5、(4分)已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线 x 0经过D点,交AB于E点,且OB∙AC=160,则点E的坐标为( ).
A.(3,8)B.(12,)C.(4,8)D.(12,4)
6、(4分)顺次连接矩形四边中点得到的四边形一定是( )
A.正方形B.矩形C.菱形D.不确定,与矩形的边长有关
7、(4分)满足下列条件的四边形不是正方形的是( )
A.对角线相互垂直的矩形B.对角线相等的菱形
C.对角线相互垂直且相等的四边形D.对角线垂直且相等的平行四边形
8、(4分)在分式(a,b为正数)中,字母a,b值分别扩大为原来的3倍,则分式的值( )
A.不变B.缩小为原来的
C.扩大为原来的3倍D.不确定
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)要使分式有意义,应满足的条件是__________
10、(4分)2016年5月某日,重庆部分区县的最高温度如下表所示:
则这组数据的中位数是__________.
11、(4分)如图,在边长为2的正方形ABCD中,点E是边AD中点,点F在边CD上,且FE⊥BE,设BD与EF交于点G,则△DEG的面积是___
12、(4分)分式与的最简公分母是__________.
13、(4分)若,则的值是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于x轴对称的△A1B1C1;
(1)将△ABC向右平移4个单位长度,画出平移后的△A1B1C1.
15、(8分)如图,在平面直角坐标系xOy中,一次函y=kx+b的图象经过点A(-2,4),且与正比例函数的图象交于点B(a,2).
(1)求a的值及一次函数y=kx+b的解析式;
(2)若一次函数y=kx+b的图象与x轴交于点C,且正比例函数y=-x的图象向下平移m(m>0)个单位长度后经过点C,求m的值;
(3)直接写出关于x的不等式0<<kx+b的解集.
16、(8分)解不等式(组),并将其解集分别表示在数轴上
(1)10﹣4(x﹣3)≤2(x﹣1);
(2).
17、(10分)如图,在菱形中,是的中点,且,;
求:(1)的大小;
(2)菱形的面积.
18、(10分)计算能力是数学的基本能力,为了进一步了解学生的计算情况,初2020级数学老师们对某次考试中第19题计算题的得分情况进行了调查,现分别从A、B两班随机各抽取10名学生的成绩如下:
A班10名学生的成绩绘成了条形统计图,如下图,
B班10名学生的成绩(单位:分)分别为:9,8,9,10,9,7,9,8,10,8
经过老师对所抽取学生成绩的整理与分析,得到了如下表数据:
根据以上信息,解答下列问题.
(1)补全条形统计图;
(2)直接写出表中a,b,c的值:a= ,b= ,c= ;
(3)根据以上数据,你认为A、B两个班哪个班计算题掌握得更好?请说明理由(写出其中两条即可): .
(4)若9分及9分以上为优秀,若A班共55人,则A班计算题优秀的大约有多少人?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若是一元二次方程的解,则代数式的值是_______
20、(4分)已知,则比较大小2_____3(填“<“或“>”)
21、(4分)函数y=的自变量x的取值范围为_____.
22、(4分)当 = ______ 时,分式的值为0.
23、(4分)如图,Rt△ABC中,∠BAC=90°,AB=AC,将△ABC绕点C顺时针旋转40°,得到△,与AB相交于点D,连接,则∠的度数是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某货运公司有大小两种货车,3辆大货车与4辆小货车一次可以运货29吨,2辆大货车与6辆小货车一次可以运货31吨.
(1)1辆大货车和1辆小货车一次可以分别运货多少吨?
(2)有46.4吨货物需要运输,货运公司拟安排大小货车共10辆(要求两种货车都要用),全部货物一次运完,其中每辆大货车一次运货花费500元,每辆小货车一次运货花费300元,请问货运公司应如何安排车辆最节省费用?
25、(10分)2019年6月11日至17日是我国第29个全国节能宣传周,主题为“节能减耗,保卫蓝天”。某学校为配合宣传活动,抽查了某班级10天的用电量,数据如下表(单位:度):
(1)这10天用电量的众数是___________,中位数是_________;
(2)求这个班级平均每天的用电量;
(3)已知该校共有20个班级,试估计该校6月份(30天)总的用电量.
26、(12分)如图,已知□ABCD边BC在x轴上,顶点A在y轴上,对角线AC所在的直线为y=+6,且AC=AB,若点P从点A出发以1cm/s的速度向终点O运动,同时点Q从点C出发以2cm/s的速度沿射线CB运动,当点P到达终点O时,点Q也随之停止运动.设点P的运动时间为t(s).
(1)直接写出顶点D的坐标(______,______),对角线的交点E的坐标(______,______);
(2)求对角线BD的长;
(3)是否存在t,使S△POQ=S▱ABCD,若存在,请求出的t值;不存在说明理由.
(4)在整个运动过程中,PQ的中点到原点O的最短距离是______cm,(直接写出答案)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
解:A选项中,根据对顶角相等,得与一定相等;
B、C项中无法确定与是否相等;
D选项中因为∠1=∠ACD,∠2>∠ACD,所以∠2>∠1.
故选:D
2、C
【解析】
题中给出的式子我们不能直观的知道四边形的形状,则我们可以先首先把
变形整理,先去括号,再移项之后,可利用完全平方差的公式得到边之间的关系.从而判断四边形的形状.
【详解】
两个非负数相加得零,只有0+0=0这种情况
故
所以
故得到两组对边相等,则四边形为平行四边形
故答案为C
本题通过式与形的结合,考察了非负数的性质和平行四边形的判定.需要了解的知识点有:两个非负数相加得零,只有0+0=0这种情况;两组对边相等的四边形是平行四边形.
3、D
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.000043毫米,则这个数用科学记数法表示为4.3×10-5毫米,
故选:D.
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
4、B
【解析】
应先判断出所求的点的横纵坐标的符号,进而判断其所在的象限.
【详解】
解:∵点的坐标为
∴点在第二象限
故选:B
本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点.牢记四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
5、B
【解析】
过点B作轴于点,由可求出菱形的面积,由点的坐标可求出的长,根据勾股定理求出的长,故可得出点的坐标,对角线相交于D点可求出点坐标,用待定系数法可求出双曲线的解析式,与的解析式联立,即可求出点的坐标.
【详解】
过点B作轴于点,
,点的坐标
又 菱形的边长为10,
在中,
又 点是线段的中点,
点的坐标为
又
直线的解析式为
联立方程可得:
解得: 或,
点的坐标为
故选:B.
本题主要考查反比例函数与一次函数以及菱形综合,熟练的掌握菱形面积求法是解决本题的关键.
6、C
【解析】
根据三角形的中位线平行于第三边,且等于第三边的一半求解.需注意新四边形的形状只与对角线有关,不用考虑原四边形的形状.
【详解】
如图,连接AC、BD.
在△ABD中,
∵AH=HD,AE=EB,
∴EH=BD,
同理FG=BD,HG=AC,EF=AC,
又∵在矩形ABCD中,AC=BD,
∴EH=HG=GF=FE,
∴四边形EFGH为菱形.
故选:C.
本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.
7、C
【解析】
A.对角线相互垂直的矩形是正方形,故本项正确;B. 对角线相等的菱形是正方形,故本项正确;C.对角线互相垂直、平分、且相等的四边形才是正方形,故本项错误;D. 对角线垂直且相等的平行四边形是正方形,故本项正确.故选C.
8、B
【解析】
把a和b的值扩大大为原来的3倍,代入后根据分式的基本性质即可求出答案.
【详解】
解:把a和b的值扩大大为原来的3倍,得
= ,
∴分式的值缩小为原来的.
故选:B.
本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
本题主要考查分式有意义的条件:分母不能为1.
【详解】
解:∵x-2≠1,
∴x≠2,
故答案是:x≠2.
本题考查的是分式有意义的条件,当分母不为1时,分式有意义.
10、27℃
【解析】
根据中位数的求解方法,先排列顺序,再求解.
【详解】
解:将这组数据按从小到大的顺序排列:24,25,26,26,28,28,29,29,
此组数据的个数是偶数个,所以这组数据的中位数是(26+28)÷2=27,
故答案为27℃.
本题考查了中位数的意义.先把数据按由小到大顺序排序:若数据个数为偶数,则取中间两数的平均数;若数据个数为奇数,则取中间的一个数.
11、
【解析】
过点G作GM⊥AD于M,先证明△ABE∽△DEF,利用相似比计算出DF= ,再利用正方形的性质判断△DGM为等腰直角三角形得到DM=MG,设DM=x,则MG=x,EM=1-x,然后证明△EMG∽△EDF,则利用相似比可计算出GM,再利用三角形面积公式计算S△DEG即可.
【详解】
解:过点G作GM⊥AD于M,如图,
∵FE⊥BE,
∴∠AEB+∠DEF=90°,
而∠AEB+∠ABE=90°,
∴∠ABE=∠DEF,
而∠A=∠EDF=90°,
∴△ABE∽△DEF,
∴AB:DE=AE:DF,即2:1=1:DF,
∴DF=,
∵四边形ABCD为正方形,
∴∠ADB=45°,
∴△DGM为等腰直角三角形,
∴DM=MG,
设DM=x,则MG=x,EM=1-x,
∵MG∥DF,
∴△EMG∽△EDF,
∴MG:DF=EM:ED,即x:=(1-x):1,解得x=,
∴S△DEG=×1×=,
故答案为.
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.熟练运用相似比计算线段的长.
12、
【解析】
先把分母分解因式,再根据最简公分母定义即可求出.
【详解】
解:第一个分母可化为(x-1)(x+1)
第二个分母可化为x(x+1)
∴最简公分母是x(x-1)(x+1).
故答案为:x(x-1)(x+1)
此题的关键是利用最简公分母的定义:取各分母系数的最小公倍数与字母因式的最高次幂的积作最简公分母.
13、1
【解析】
利用完全平方公式变形,原式=,把代入计算即可.
【详解】
解:
把代入得:
原式=.
故答案为:1.
本题考查的是求代数式的值,把原式利用完全平方公式变形是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(1)见解析.
【解析】
(1)作出A、B、C三点关于x轴的对称点,把这三点连接起来即得到△A1B1C1;
(1)作出A、B、C三点向右平移4个单位长度后的三点,再把这三点连接起来就得到了平移后的△A1B1C1
【详解】
解:(1)如图所示:
(1)如图所示:
点睛:本题考查对称和平移,对图象对称和平移的概念要清楚,并会画出图形是解决本题的关键
15、(1)y=2x+8;(2)m=;(3)-3<x<1
【解析】
(1)先确定B的坐标,然后根据待定系数法求解析式;
(2)先求得C的坐标,然后根据题意求得平移后的直线的解析式,把C的坐标代入平移后的直线的解析式,即可求得M的值;
(3)找出直线y=-x落在y=kx+b的下方且在x轴上方的部分对应的x的取值范围即可.
【详解】
解:(1)∵正比例函数的图象经过点B(a,2),
∴2=-a,解得,a=-3,
∴B(-3,2),
∵一次函数y=kx+b的图象经过点A(-2,4),B(-3,2),
∴,解得,
∴一次函数y=kx+b的解析式为y=2x+8;
(2)∵一次函数y=2x+8的图象与x轴交于点C,
∴C(-4,1),
∵正比例函数y=-x的图象向下平移m(m>1)个单位长度后经过点C,
∴平移后的函数的解析式为y=-x-m,
∴1=-×(-4)-m,
解得m=;
(3)∵一次函y=kx+b与正比例函数y=-x的图象交于点B(-3,2),
且一次函数y=2x+8的图象与x轴交于点C(-4,1),
∴关于x的不等式1<-x<kx+b的解集是-3<x<1.
考查了两条直线相交或平行的问题,解题关键是掌握理解待定系数法、直线上点的坐标特征、直线的平移和一次函数和一元一次不等式的关系.
16、(1)x≥1,解集在数轴上如图所示见解析;(2)﹣1≤x<3,解集在数轴上如图所示见解析.
【解析】
(1)去括号,移项,合并同类项,化系数为1即可;
(2)先求出其中各不等式的解集,再求出这些解集的公共部分即可.
【详解】
(1)10﹣1(x﹣3)≤2(x﹣1)
10﹣1x+12≤2x﹣2,
﹣6x≤﹣21,
x≥1.
解集在数轴上如图所示:
(2)
由①得到:x≥﹣1,
由②得到:x<3,
∴﹣1≤x<3,
本题考查不等式组的解法,数轴等知识,解题的关键是熟练掌握不等式组的解法,属于中考常考题型.
17、(1);(2).
【解析】
(1)由为中点,,可证,从而是等边三角形,,进而可求的大小;
(2)由菱形的性质可求,从而,,根据勾股定理求出AO的长,然后根据菱形面积公式求解即可.
【详解】
(1)连接,
∵为中点,,
∴垂直平分,
∴,
∵四边形是菱形,
∴,
∴,
∴是等边三角形,
∴.
∴.
(2)在菱形中,,
∴,,
∴,
∴,
根据勾股定理可得:,
即,
∴.
此题考查了菱形的性质,等边三角形的判定与性质,含30度角的直角三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用是解题关键.
18、(1)见解析;(2)8.7,8, 9;(3)B班计算题掌握的更好,理由见详解;(4)A班计算题优秀的大约有22人.
【解析】
(1)先根据A班的总人数求出成绩为 10分的人数,然后即可补全条形统计图 ;
(2)利用平均数的公式和中位数,众数的概念求解即可;
(3)通过对比两班的平均数,中位数,众数,极差和方差即可得出答案;
(4)用总人数55乘以优秀人数所占的百分比即可得出答案.
【详解】
(1)成绩为10分的人数=10﹣1﹣2﹣3﹣1=3,
补全条形统计图如图所示,
(2)a=(9+8+9+10+9+7+9+8+10+8)=8.7;
中位数是将A班的10个成绩按照从小到大的顺序排列之后处于中间位置的数,此时第5个数和第6个数都是8,所以 ;
众数为B班成绩中出现次数最多的数,可以看出9出现了4次,次数最多,所以c=9;
(3)B班学生计算题掌握得更好,理由:
B班的平均分高于A班,B班的中位数高于A班;
(4)55×=22人,
答:A班计算题优秀的大约有22人.
本题主要考查数据的分析与整理,掌握平均数,中位数,众数的求法是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-3
【解析】
将代入到中即可求得的值.
【详解】
解:是一元二次方程的一个根,
,
.
故答案为:.
此题主要考查了一元二次方程的解(根的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
20、<
【解析】
要使两个分式的和为零,则必须两个分式都为0,进而计算a,b的值,代入比较大小即可.
【详解】
解:∵ +=0,
∴a﹣3=0,2﹣b=0,
解得a=3,b=2,
∴2 , ,
∴ .
故答案为:<
本题主要考查根式为零时参数的计算,这是考试的重点知识,应当熟练掌握.
21、x≠1.
【解析】
根据分式有意义的条件,即可快速作答。
【详解】
解:根据分式有意义的条件,得:x-1≠0,即x≠1;故答案为:x≠1。
本题考查了函数自变量的取值范围,但分式有意义的条件是解题的关键。
22、-2
【解析】
分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可.
【详解】
分式的值为1,
即|x|-2=1,x=±2,
∵x-2≠1,
∴x≠2,
即x=-2,
故当x=-2时,分式的值为1.
故答案为:-2.
此题考查了分式的值为1的条件.由于该类型的题易忽略分母不为1这个条件,所以常以这个知识点来命题.
23、20
【解析】
由旋转的性质可得AC=A'C,∠ACA'=40°,∠BAC=∠B'A'C=90°,由等腰三角形的性质可得∠AA'C=70°=∠A'AC,即可求解.
【详解】
∵将△ABC绕点C顺时针旋转40°得到△A'B'C,
∴△ABC≌△A'B'C
∴AC=A'C,∠ACA′=40°,∠BAC=∠B'A'C=90°
∴∠AA'C=70°=∠A'AC
∴∠B'A'A=∠B'A'C−∠AA'C=20°.
本题考查全等三角形的判定与性质,等腰直角三角形,旋转的性质.旋转前后对应线段相等,对应角相等,对应图形全等.在旋转过程中,一定要仔细读题,能理解∠ACA′即为旋转角等于40°,AC和A'C为一组对应线段.
二、解答题(本大题共3个小题,共30分)
24、(1)1辆大货车和1辆小货车一次可以分别运货5吨和3.5吨;(2)货运公司安排大货车8辆,小货车2辆,最节省费用.
【解析】
(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;
(2)设货运公司安排大货车m辆,则安排小货车(10-m)辆.根据10辆货车需要运输46.4吨货物列出不等式.
【详解】
解:(1)设1辆大货车和1辆小货车一次可以分别运货吨和吨,
根据题意,得,解得,
所以大货车和1辆小货车一次可以分别运货5吨和3.5吨;
(2)设货运公司安排大货车m辆,则安排小货车(10-m)辆,
根据题意可得:5m+3.5(10-m)≥46.4,
解得:m≥7.6,
因为m是正整数,且m≤10,
所以m=8或9或10,
所以10-m=2或1或0,
方案一:所需费用=500×8+300×2=4600(元),
方案二:所需费用=500×9+300×1=4800(元),
方案三:所需费用=500×10+300×0=5000(元),
因为4600<4800<5000,
所以货运公司安排大货车8辆,则安排小货车2辆,最节省费用.
考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案.
25、(1)13,13;(2)12;(3)估计该校6月份总的用电量约7200度
【解析】
(1)分别利用众数、中位数的定义求解即可;
(2)用加权平均数的计算方法计算平均用电量即可;
(3)用班级数乘以日平均用电量乘以天数即可求得总用电量.
【详解】
(1)众数为13;中位数为13;
(2)度;
答:这个班级平均每天的用电量为12度
(3)总用电量为度.
答:估计该校6月份总的用电量约7200度
本题考查了统计的有关概念及用样本估计总体的知识,题目相对比较简单,属于基础题.
26、(1)16;6;4;3;(2)BD=6;(3)存在,t值为2;(4)此时PQ的中点到原点O的最短距离为.
【解析】
(1)令x=0,y=0代入解析式得出A,C坐标,进而利用平行四边形的性质解答即可;
(2)根据平行四边形的性质得出点B,D坐标,利用两点间距离解答即可;
(3)利用三角形的面积公式和平行四边形的面积公式列出方程解答即可;
(4)根据直角三角形斜边上中线等于斜边的一半可知,当PQ长度最短时,PQ的中点到原点O的距离最短解答即可.
【详解】
(1)把x=0代入y=+6,可得y=6,
即A的坐标为(0,6),
把y=0代入y=+6,可得:x=8,
即点C的坐标为(8,0),
根据平行四边形的性质可得:点B坐标为(-8,0),
所以AD=BC=16,
所以点D坐标为(16,6),
点E为对角线的交点,
故点E是AC的中点,
E的坐标为(4,3),
故答案为16;6;4;3;
(2)因为B(-8,0)和D(16,6),
∴BD=;
(3)设时间为t,可得:OP=6-t,OQ=8-2t,
∵S△POQ= S▱ABCD,
当0<t≤4时,,
解得:t1=2,t2=8(不合题意,舍去),
当4<t≤6时,,
△<0,不存在,
答:存在S△POQ=S▱ABCD,此时t值为2;
(4)∵,
当t=时,PQ=,
当PQ长度最短时,PQ的中点到原点O的距离最短,此时PQ的中点到原点O的最短距离为PQ==
此题是一次函数综合题,主要考查了平行四边形的性质,待定系数法,利用平行四边形的性质解答是解本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
地区
合川
永川
江津
涪陵
丰都
梁平
云阳
黔江
温度(℃)
25
26
29
26
24
28
28
29
A班
B班
平均数
8.3
a
中位数
b
9
众数
8或10
c
极差
4
3
方差
1.81
0.81
度数
8
9
10
13
14
15
天数
1
1
2
3
1
2
2024-2025学年江苏省泰兴市黄桥初级中学数学九年级第一学期开学教学质量检测试题【含答案】: 这是一份2024-2025学年江苏省泰兴市黄桥初级中学数学九年级第一学期开学教学质量检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省泰兴市实验初级中学数学九年级第一学期开学考试模拟试题【含答案】: 这是一份2024-2025学年江苏省泰兴市实验初级中学数学九年级第一学期开学考试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省苏州实验初级中学数学九年级第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年江苏省苏州实验初级中学数学九年级第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。