2024-2025学年吉林省农安县普通中学九年级数学第一学期开学考试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,△A1B1C1是由△ABC沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20cm2,则四边形A1DCC1的面积为( )
A.10 cm2B.12 cm2C.15 cm2D.17 cm2
2、(4分)若直线y=x+1与y=-2x+a的交点在第一象限,则a的取值可以是
A.-1B.0C.1D.2
3、(4分)已知点是平行四边形内一点(不含边界),设.若,则( )
A.B.
C.D.
4、(4分)一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从A点到B点经过的路线长是( )
A.4B.5C.6D.7
5、(4分)如图,在菱形ABCD中,不一定成立的是
A.四边形ABCD是平行四边形B.
C.是等边三角形D.
6、(4分)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )
A.①,②B.①,④C.③,④D.②,③
7、(4分)在△ABC中,AB=6,AC=8,BC=10,则该三角形为( )
A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形
8、(4分)不等式组的最小整数解是( )
A.0B.-1C.1D.2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,P是矩形ABCD内一点,,,,则当线段DP最短时, ________.
10、(4分)学校位于小亮家北偏东35方向,距离为300m,学校位于大刚家南偏东85°方向,距离也为300m,则大刚家相对于小亮家的位置是________.
11、(4分)为了解某篮球队队员身高,经调查结果如下:3人,2人,2人,3人,则该篮球队队员平均身高是__________.
12、(4分)方程的根是______.
13、(4分)正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点,若△PBE是等腰三角形,则腰长为________.
三、解答题(本大题共5个小题,共48分)
14、(12分) “黄金1号”玉米种子的价格为5元/kg.如果一次购买5kg以上的种子,超过5kg部分的种子价格打8折.
(1)购买3kg种子,需付款 元,购买6kg种子,需付款 元.
(2)设购买种子x kg,付款金额为y元,写出y与x之间的函数解析式.
(3)张大爷要购买种子5千克,李大爷要购买种子4千克,怎样购买让他们花钱最少?他们各应付款多少元?(结果保留整数)
15、(8分)如图,已知、分别是平行四边形的边、上的点,且.
求证:四边形是平行四边形.
16、(8分)如图,直线与坐标轴交于点、两点,直线与直线相交于点,交轴于点,且的面积为.
(1)求的值和点的坐标;
(2)求直线的解析式;
(3)若点是线段上一动点,过点作轴交直线于点,轴,轴,垂足分别为点、,是否存在点,使得四边形为正方形,若存在,请求出点坐标,若不存在,请说明理由.
17、(10分)某花圃用花盆培育某种花苗,经过试验发现,每盆花的盈利与每盆株数构成一定的关系.每盆植入3株时,平均每株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.
(1)若每盆增加x株,平均每盆盈利y元,写出y关于x的函数表达式;
(2)要使每盆的盈利为10元,且每盆植入株数尽可能少,问每盆应植入多少株?
18、(10分)如图,在△ABC中,AD为BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.
(1)四边形AFCD是什么特殊的四边形?请说明理由.
(2)填空:
①若AB=AC,则四边形AFCD是_______形.
②当△ABC满足条件______时,四边形AFCD是正方形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平行四边形ABCD中,AB=4,∠ABC=60°,点E为BC上的一点,点F,G分别为DE,AD的中点,则GF长的最小值为________________.
20、(4分)若点(a,b)在一次函数y=2x-3的图象上,则代数式4a-2b-3的值是__________
21、(4分)如图所示,四边形ABCD为矩形,点O为对角线的交点,∠BOC=120°,AE⊥BO交BO于点E,AB=4,则BE等于_____.
22、(4分)将直线平移后经过点(5,),则平移后的直线解析式为______________.
23、(4分)如图,点A,B分别是反比例函数y=与y=的图象上的点,连接AB,过点B作BC⊥x轴于点C,连接AC交y轴于点E.若AB∥x轴,AE:EC=1:2,则k的值为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在矩形中,对角线的垂直平分线分别交、、于点、、,连接和.
(1)求证:四边形为菱形.
(2)若,,求菱形的周长.
25、(10分)某学校欲招聘一名新教师,对甲、乙、丙三名应试者进行了面试、笔试和才艺三个方面的量化考核,他们的各项得分(百分制)如下表所示:
(1)根据三项得分的平均分,从高到低确定应聘者的排名顺序;
(2)学校规定:笔试、面试、才艺得分分别不得低于80分、80分、70分,并按照60%、30%、10%的比例计入个人总分,请你说明谁会被录用?
26、(12分)先化简,再求值:.其中.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
解:∵△A1B1C1是由ABC沿BC方向平移了BC长度的一半得到的,
∴AC∥AC1,B1C=B1C1,
∴△B1DC∽△B1A1C1,
∵△B1DC与△B1A1C1的面积比为1:4,
∴四边形A1DCC1的面积是△ABC的面积的,
∴四边形A1DCC1的面积是:cm2,
故选C
2、D
【解析】
联立两直线解析式,解关于x、y的二元一次方程组,然后根据交点在第一象限,横坐标是正数,纵坐标是正数,列出不等式组求解即可.
【详解】
解:联立,
解得:,
∵交点在第一象限,
∴,
解得:a>1.
故选D.
本题考查了两直线相交的问题,第一象限内点的横坐标是正数,纵坐标是正数,以及一元一次不等式组的解法,把a看作常数表示出x、y是解题的关键.
3、D
【解析】
依据平行四边形的性质以及三角形内角和定理,可得θ2-θ1=10°,θ4-θ3=30°,两式相加即可得到θ2+θ4-θ1-θ3=40°.
【详解】
解:∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD=60°,
∴∠BAM=60°-θ1,∠DCM=60°-θ3,
∴△ABM中,60°-θ1+θ2+110°=180°,即θ2-θ1=10°①,
△DCM中,60°-θ3+θ4+90°=180°,即θ4-θ3=30°②,
由②+①,可得(θ4-θ3)+(θ2-θ1)=40°,
;
故选:D.
本题主要考查了平行四边形的性质以及三角形内角和定理等知识;熟练掌握平行四边形的对角相等是解题的关键.
4、B
【解析】
如果设A点关于y轴的对称点为A′,那么C点就是A′B与y轴的交点.易知A′(-3,3),又B(1,0),可用待定系数法求出直线A′B的方程.再求出C点坐标,根据勾股定理分别求出AC、BC的长度.那么光线从A点到B点经过的路线长是AC+BC,从而得出结果.
【详解】
解:如果将y轴当成平面镜,设A点关于y轴的对称点为A′,则由光路知识可知,A′相当于A的像点,光线从A到C到B,相当于光线从A′直接到B,所以C点就是A′B与y轴的交点.
∵A点关于y轴的对称点为A′,A(3,3),
∴A′(-3,3),
进而由两点式写出A′B的直线方程为:y=−(x-1).
令x=0,求得y=.所以C点坐标为(0,).
那么根据勾股定理,可得:
AC==,BC==.
因此,AC+BC=1.
故选:B.
此题考查轴对称的基本性质,勾股定理的应用等知识点.此题考查的思维技巧性较强.
5、C
【解析】
菱形是特殊的平行四边形,菱形具有平行四边形的所有性质,菱形是特殊的平行四边形,具有特殊性质:(1)菱形的四条边都相等,(2)菱形的对角线互相平分且垂直,(3)菱形的对角线平分每一组对角,根据菱形的性质进行解答.
【详解】
A选项,因为菱形ABCD,所以四边形ABCD是平行四边形,因此A正确,
B选项,因为AC,BD是菱形的对角线,所以, 因此B正确,
C选项,根据菱形邻边相等可得: 是等腰三角形,但不一定是等边三角形,因此C选项错误,
D选项,因为菱形的对角线平分每一组对角,所以,因此D正确,
故选C.
本题主要考查菱形的性质,解决本题的关键是要熟练掌握菱形的性质.
6、D
【解析】
确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.
【详解】
只有②③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,
∴带②③两块碎玻璃,就可以确定平行四边形的大小.
故选D.
本题考查平行四边形的定义以及性质,解题的关键是理解如何确定平行四边形的四个顶点,四个顶点的位置确定了,平行四边形的大小就确定了,属于中考常考题型.
7、B
【解析】
在△ABC中,AB=6,AC=8,BC=10,推断出62+82=102,由勾股定理的逆定理得此三角形是直角三角形,故选B.
8、A
【解析】
解:解不等式组 可得,
在这个范围内的最小整数为0,
所以不等式组的最小整数解是0,
故选A
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
因为AP⊥BP,则P点在AB为直径的半圆上,当P点为AB的中点E与D点连线与半圆AB的交点时,DP最短,求出此时PC的长度便可.
【详解】
解:以AB为直径作半圆O,连接OD,与半圆O交于点P′,当点P与P′重合时,DP最短,
则AO=OP′=OB=AB=2,
∵AD=2,∠BAD=90°,
∴OD=2,∠ADC=∠AOD=∠ODC=45°,
∴DP′=OD-OP′=2-2,
过P′作P′E⊥CD于点E,则
P′E=DE=DP′=2-,
∴CE=CD-DE=+2,
∴CP′==.
故答案为.
本题是一个矩形的综合题,主要考查了矩形的性质,勾股定理,圆的性质,关键是作辅助圆和构造直角三角形.
10、北偏西25°方向距离为300m
【解析】
根据题意作出图形,即可得到大刚家相对于小亮家的位置.
【详解】
如图,根据题意得∠ACD=35°,∠ABE=85°,AC=AB=300m
由图可知∠CBE=∠BCD,
∵AB=AC,
∴∠ABC=∠ACB,
即∠ABE-∠CBE=∠ACD+∠BCD,
∴85°-∠CBE=35°+∠CBE,
∴∠CBE=25°,
∴∠ABC=∠ACB=60°,
∴△ABC为等边三角形,则BC=300m,
∴大刚家相对于小亮家的位置是北偏西25°方向距离为300m
故填:北偏西25°方向距离为300m.
此题主要考查方位角的判断,解题的关键是根据题意作出图形进行求解.
11、173.1.
【解析】
根据加权平均数的定义求解可得.
【详解】
解:(172×3+173×2+174×2+171×3)÷(3+2+2+3)
=(116+346+348+121)÷10
=1731÷10
=173.1(cm)
答:该篮球队队员平均身高是173.1cm.
故答案为:173.1.
本题主要考查加权平均数,熟练掌握加权平均数的定义是解题的关键.
12、
【解析】
对原方程移项化简,即可求出x,然后再检验即可.
【详解】
解:
x=2,
经检验x=2是分式方程的解.
本题考查了解分式方程,熟练掌握解方程的方法是解题关键.
13、2或或
【解析】
分情况讨论:
(1)当PB为腰时,若P为顶点,则E点与C点重合,如图1所示:
∵四边形ABCD是正方形,
∴AB=BC=CD=AD=4,∠A=∠C=∠D=90°,
∵P是AD的中点,
∴AP=DP=2,
根据勾股定理得:BP===;
若B为顶点,则根据PB=BE′得,E′为CD中点,此时腰长PB=;
(2)当PB为底边时,E在BP的垂直平分线上,与正方形的边交于两点,即为点E;
①当E在AB上时,如图2所示:
则BM=BP=,
∵∠BME=∠A=90°,∠MEB=∠ABP,
∴△BME∽△BAP,
∴,即,
∴BE=;
②当E在CD上时,如图3所示:
设CE=x,则DE=4−x,
根据勾股定理得:BE2=BC2+CE2,PE2=DP2+DE2,
∴42+x2=22+(4−x)2,
解得:x=,
∴CE=,
∴BE= ==;
综上所述:腰长为:,或,或;
故答案为,或,或.
点睛:本题考查了正方形的性质、等腰三角形的判定、勾股定理;熟练掌握正方形的性质并能进行推理计算是解决问题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)15,1;(2);(3)张大爷和李大爷一起购买花钱最少,张大爷应付款23元,李大爷应付款18 元.
【解析】
(1)根据题意,可以分别计算出购买3kg和购买6kg种子需要付款的金额;
(2)根据题意,可以分别写出0≤x≤5和x>5时对应的函数解析式;
(3)根据题意,可知张大爷和李大爷一起购买花钱最少,然后算出他们需要付款的金额即可.
【详解】
解:(1)由题意可得,
购买3kg种子需要付款:5×3=15(元),
购买6kg种子需要付款:5×5+(6−5)×5×0.8=1(元),
故答案为:15,1.
(2)由题意可得,
当0≤x≤5时,y=5x,
当x>5时,y=5×5+5×0.8(x−5)=4x+5,
∴
(3)一次性购买9kg种子花钱最少.
若单独购买,则张大爷和李大爷分别付款25元和20元,
若一起购买9kg,则把代人得,
.
(元),
(元)
∴张大爷和李大爷一起购买花钱最少,张大爷应付款23元,李大爷应付款18 元.
本题考查一次函数的应用,解答本题的关键是明确题意,列出一次函数解析式.
15、见解析.
【解析】
根据平行四边形性质得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根据平行四边形的判定推出即可.
【详解】
解:证明:∵四边形是平行四边形,
∴,且,
∴,
∵,
∴,
∴四边形是平行四边形
此题考查平行四边形的判定与性质,解题关键在于掌握判定法则
16、(1),点为;(2);(3)存在,点为,理由见解析
【解析】
(1)利用一次函数图象上点的坐标特征可求出m的值及点A的坐标;
(2)过点P作PH⊥x轴,垂足为H,则PH=,利用三角形的面积公式结合△PAC的面积为,可求出AC的长,进而可得出点C的坐标,再根据点P,C的坐标,利用待定系数法即可求出直线PC的解析式;
(3)由题意,可知:四边形EMNQ为矩形,设点E的纵坐标为t,利用一次函数图象上点的坐标特征可得出点E的坐标为(t-3,t)、点Q的坐标为(,t),利用正方形的性质可得出关于t的一元一次方程,解之即可得出结论.
【详解】
解:(1)把点代入直线,
即 时,
直线,当时, 得:
,点为
(2)过点作轴,垂足为,由(1)得,
∴
解得:
点为
设直线为,把点、代入,得:
解得:
直线的解析式为
(3)由已知可得,四边形为矩形,
设点的纵坐标为,则 得:
点为
轴
点的纵坐标也为
点在直线上,当时,
又
当时,矩形为正方形,所以
故点为
本题考查了一次函数图象上点的坐标特征、三角形的面积、解一元一次方程、待定系数法求一次函数解析式以及正方形的性质,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出m的值及点A的坐标;(2)根据点的坐标,利用待定系数法求出一次函数解析式;(3)利用正方形的性质,找出关于t的一元一次方程.
17、(1)y=﹣2.5x2+1.5x+9;(2)4株
【解析】
(1)设每盆花苗增加x株,则每盆花苗有(x+3)株, 平均单株盈利为(3﹣2.5x)元,根据“每盆盈利=每盆花苗株数×单株盈利”,列函数式即可;
(2)由题(1)得“每盆花苗株数×单株盈利=1”,解一元二次方程,在两根中取较小正整数就为增加的株数,则每盆的株数可求.
【详解】
(1)解:由题意知:每盆花苗增加x株,则每盆花苗有(x+3)株,
平均单株盈利为:(3﹣2.5x)元,
则:y=(x+3)(3﹣2.5x)=﹣2.5x2+1.5x+9
(2)解:由题意得:(x+3)(3﹣2.5x)=1.
化简,整理得x2﹣3x+2=2.
解这个方程,得x1=1,x2=2,
则3+1=4,2+3=5,
答:每盆应植4株.
本题考查一元二次方程的应用,解题关键在于读懂题意列出方程.
18、 (1)平行四边形,理由见解析; (2)①矩形,②AB=AC,∠BAC=1.
【解析】
(1)由“AAS”可证△AEF≌△DEB,可得AF=BD=CD,由平行四边形的判定可得四边形AFCD是平行四边形;
(2)①由等腰三角形的性质可得AD⊥BC,可证平行四边形AFCD是矩形;
②由等腰直角三角形的性质可得AD=CD=BD,AD⊥BC,可证平行四边形AFCD是正方形.
【详解】
解:(1)平行四边形
理由如下:∵AF∥BC
∴∠AFE=∠DBE,
在ΔAFE与△DBE中
∴ΔAFE≌ΔDBE
∴AF=BD,
又BD=CD
∴AF=CD
又AF∥CD
∴四边形AFCD是平行四边形;
(2)①∵AB=AC,AD是BC边上的中线
∴AD⊥BC,且四边形AFCD是平行四边形
∴四边形AFCD是矩形;
②当△ABC满足AB=AC,∠BAC=1°条件时,四边形AFCD是正方形.
理由为:∵AB=AC,∠BAC=1°,AD是BC边上的中线
∴AD=CD=BD,AD⊥BC
∵四边形AFCD是平行四边形,AD⊥BC
∴四边形AFCD是矩形,且AD=CD
∴四边形AFCD是正方形.
故答案为:(1)平行四边形,理由见解析; (2)①矩形,②AB=AC,∠BAC=1.
本题考查正方形的判定,平行四边形的判定以及全等三角形的判定与性质、三角形中线的性质等知识点,熟练掌握平行四边形的判定是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据G、F分别为AD和DE的中点,欲使GF最小,则只要使AE为最短,即AE必为△ABC中BC边上的高,再利用三角形的中位线求解即可.
【详解】
解:∵G、F分别为AD和DE的中点,∴线段GF为△ADE的边AD及DE上的中位线,∴GF=AE,欲使GF最小,则只要使AE为最短,∴AE必为△ABC中BC边上的高,∵四边形ABCD为一平行四边形且AB=4、∠ABC=60°,作AE⊥BC于E,E为垂足,∴∠BAE=30°,∴BE=2, ∴AE=,∴GF=AE=.故答案为.
本题考查了最短路径,点到直线的距离及三角形的中位线定理,掌握点到直线的距离及三角形的中位线定理是解题的关键.
20、1
【解析】
根据题意,将点(a,b)代入函数解析式即可求得2a-b的值,变形即可求得所求式子的值.
【详解】
∵点(a,b)在一次函数y=2x-1的图象上,
∴b=2a-1,
∴2a-b=1,
∴4a-2b=6,
∴4a-2b-1=6-1=1,
故答案为:1.
本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.
21、1
【解析】
根据四边形ABCD是矩形,可知因为所以△AOB是等边三角形,由三线合一性质可知的长度
【详解】
∵四边形ABCD是矩形,
∴△AOB是等边三角形,
故答案为1.
本题主要考查了矩形的性质,等边三角形的性质,熟知矩形的对角线相等且相互平分和等边三角形三线合一的性质是解题关键.
22、y=2x-1
【解析】
根据平移不改变k的值可设平移后直线的解析式为y=2x+b,然后将点(5,1)代入即可得出直线的函数解析式.
【详解】
解:设平移后直线的解析式为y=2x+b.
把(5,1)代入直线解析式得1=2×5+b,
解得 b=-1.
所以平移后直线的解析式为y=2x-1.
故答案为:y=2x-1.
本题考查一次函数图象与几何变换及待定系数法求函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.
23、1.
【解析】
设A(m,),则B(﹣mk,),设AB交y轴于M,利用平行线的性质,得到AM和MB的比值,即可求解.
【详解】
解:设A(m,),则B(﹣mk,),设AB交y轴于M.
∵EM∥BC,
∴AM:MB=AE:EC=1:1,
∴﹣m:(﹣mk)=1:1,
∴k=1,
故答案为1.
本题考查的知识点是反比例函数系数k的几何意义,解题关键是利用平行线的性质进行解题.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)20
【解析】
(1)求出AO=OC,∠AOE=∠COF,根据平行线的性质得出∠EAO=∠FCO,根据ASA推出:△AEO≌△CFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;
(2)设菱形的边长为由题意得:,,,再利用勾股定理进行计算即可解答.
【详解】
(1)∵四边形为矩形,
∴,
∴,
又∵是的垂直平分线,
∴,,
在和中,,
∴∴
∵,∴四边形为平行四边形.
∵.∴四边形为菱形
(2)解:设菱形的边长为由题意得:,.
又∵,,∴,
∵四边形为矩形,
∴,
在中,由勾股定理得:
又∵,,,
∴,解得.
∴菱形的周长=5×4=20
此题考查线段垂直平分线的性质,菱形的判定与性质,矩形的性质,解题关键在于证明△AEO≌△CFO.
25、(1)排名顺序为:甲、丙、乙;(2)丙会被录用.
【解析】
(1)代入求平均数公式即可求出三人的平均成绩,比较得出结果;
(2)先算出甲、乙、丙的总分,根据公司的规定先排除甲,再根据丙的总分最高,即可得出丙被录用
【详解】
(1),,
∴ ∴排名顺序为:甲、丙、乙.
(2)由题意可知,只有甲的笔试成绩只有79分,不符合规定
乙的成绩为:
丙的成绩为:
∵甲先被淘汰,按照学校规定,丙的成绩高于乙的成绩,乙又被淘汰
∴丙会被录用.
此题考查加权平均数,掌握运算法则是解题关键
26、原式=,又x2+2x-15=0,得x2+2x=15,∴原式=.
【解析】
试题分析:先算括号里面的,再算除法,最后算减法,根据x2+2x-15=0得出x2+2x=15,代入代数式进行计算即可.
试题解析:原式=.
∵x2+2x-15=0,
∴x2+2x=15,
∴原式=.
【点睛】本题考查的是分式的化简求值,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.
题号
一
二
三
四
五
总分
得分
应试者
面试成绩
笔试成绩
才艺
甲
83
79
90
乙
85
80
75
丙
80
90
73
2024-2025学年吉林省四平市名校九年级数学第一学期开学联考试题【含答案】: 这是一份2024-2025学年吉林省四平市名校九年级数学第一学期开学联考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
吉林省农安县普通中学2023-2024学年数学九上期末学业质量监测试题含答案: 这是一份吉林省农安县普通中学2023-2024学年数学九上期末学业质量监测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,方程的根是,如果,那么代数式的值是.等内容,欢迎下载使用。
2023-2024学年吉林省农安县普通中学九上数学期末联考模拟试题含答案: 这是一份2023-2024学年吉林省农安县普通中学九上数学期末联考模拟试题含答案,共7页。试卷主要包含了已知,在中,,则边的长度为等内容,欢迎下载使用。