2024-2025学年吉林省德惠市大区数学九上开学检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列命题正确的个数是( )
(1)若x2+kx+25是一个完全平方式,则k的值等于10;(2)正六边形的每个内角都等于相邻外角的2倍;(3)一组对边平行,一组对角相等的四边形是平行四边形;(4)顺次连结四边形的四边中点所得的四边形是平行四边形
A.1B.2C.3D.4
2、(4分)某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛,在选拔比赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:
请你根据表中数据选一人参加比赛,最合适的人选是( )
A.甲B.乙C.丙D.丁
3、(4分)下列矩形都是由大小不等的正方形按照一定规律组成,其中,第①个矩形的周长为6,第②个矩形的周长为10,第③个矩形的周长为16,…则第⑥个矩形的周长为( )
① ② ③ ④
A.42B.46 C.68D.72
4、(4分)已知关于的分式方程无解,则的值为( )
A.B.C.D.或
5、(4分)如图,Rt△ABC的直角边AB在数轴上,点A表示的实数为0,以A为圆心,AC的长为半径作弧交数轴的负半轴于点D,若CB=1,AB=2,则点D表示的实数为( )
A.B.C.D.
6、(4分)如图,边长为1的方格纸中有一四边形ABCD(A,B,C,D四点均为格点),则该四边形的面积为( )
A.4B.6C.12D.24
7、(4分)下列各式:中,分式的有( )
A.1 个B.2 个C.3 个D.4 个
8、(4分)若在实数范围内有意义,则的取值范围是( )
A.B.C.D.且
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平行四边形ABCD中,AB=4,∠ABC=60°,点E为BC上的一点,点F,G分别为DE,AD的中点,则GF长的最小值为________________.
10、(4分)点M(a,2)是一次函数y=2x-3图像上的一点,则a=________.
11、(4分)将分别写有“绿色闵行”、“垃圾分类”、“要先行”的三张大小、质地相同的卡片随机排列,那么恰好排列成“绿色闵行垃圾分类要先行”的概率是__________.
12、(4分)如图,已知是等边三角形,点在边上,以为边向左作等边,连结,作交于点,若,,则________.
13、(4分)计算的结果是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)已知点A(2,0)在函数y=kx+3的图象上,求该函数的表达式并画出图形;
(2)求该函数图象与坐标轴围成的三角形的面积.
15、(8分)如图,矩形中,对角线、交于点,以、为邻边作平行四边形,连接
(1)求证:四边形是菱形
(2)若,,求四边形的面积
16、(8分)如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A(-1,2)、B两点,求m、n的值并直接写出点B的坐标.
17、(10分)如图,根据要求画图.
(1)把向右平移5个方格,画出平移的图形.
(2)以点B为旋转中心,把顺时针方向旋转,画出旋转后的图形.
18、(10分)如图,在12×12的正方形网格中,△TAB 的顶点坐标分别为T(1,1)、A(2,3)、B(4,2).
(1)以点T(1,1)为位似中心,按比例尺(TA′∶TA)3∶1在位似中心的同侧将△TAB放大为△TA′B′,放大后点A、B的对应点分别为A′、B′.画出△TA′B′,并写出点A′、B′的坐标;
(2)在(1)中,若C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知关于的分式方程的解为负数,则的取值范围是 .
20、(4分)在平面直角坐标系xOy中,已知A(0,1),B(1,0), C(3,1),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标是_____________.
21、(4分)分式的值为1.则x的值为_____.
22、(4分)若一次函数的图象,随的增大而减小,则的取值范围是_____.
23、(4分)若关于x的分式方程=+2有正整数解,则符合条件的非负整数a的值为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在中,点在边上,点在边的延长线上,且,与交于点.
(1)求证:;
(2)若点是的中点,,求边的长.
25、(10分)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是_____米(平面镜的厚度忽略不计).
26、(12分)已知,,是的三边,且满足,试判断的形状,并说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据完全平方式、正六边形、平行四边形的判定判断即可
【详解】
(1)若x2+kx+25是一个完全平方式,则k的值等于±10,是假命题;
(2)正六边形的每个内角都等于相邻外角的2倍,是真命题;
(3)一组对边平行,一组对角相等的四边形是平行四边形,是真命题;
(4)顺次连结四边形的四边中点所得的四边形是平行四边形,是真命题;
故选C
此题考查完全平方式、正六边形、平行四边形的判定,掌握其性质是解题关键
2、A
【解析】
根据方差的意义求解可得.
【详解】
∵四人的平均成绩相同,而甲的方差最小,即甲的成绩最稳定,
∴最合适的人选是甲,
故选:A.
本题考查方差,解答本题的关键是明确题意,掌握方差的意义.
3、C
【解析】
试题分析:观察图形:第①个矩形的周长为6,第②个矩形的周长为10,第③个矩形的周长为16,通过计算第 = 4 \* GB3 ④矩形的周长为26,前4个矩形的周长有这样的一个规律,第③个的矩形的周长=第①个矩形的周长+第②个矩形的周长,即16=6+10;第 = 4 \* GB3 ④个的矩形的周长=第 = 3 \* GB3 ③个矩形的周长+第②个矩形的周长,即26=10+16;第 = 5 \* GB3 ⑤个的矩形的周长=第 = 3 \* GB3 ③个矩形的周长+第 = 4 \* GB3 ④个矩形的周长,即=26+16=42;第 = 6 \* GB3 ⑥个的矩形的周长=第 = 4 \* GB3 ④个矩形的周长+第 = 5 \* GB3 ⑤个矩形的周长,即=26+42=48
考点:矩形的周长
点评:本题考查矩形的周长,通过前四个2的周长找出规律是本题的关键,考查学生的归纳能力
4、D
【解析】
分式方程去分母转化为整式方程,由分式方程无解得到x−3=0,确定出x的值,代入整式方程计算即可求出m的值.
【详解】
解:去分母得:3−2x−9+mx=−x+3,
整理得:(m−1)x=9,
当m−1=0,即m=1时,该整式方程无解;
当m−1≠0,即m≠1时,由分式方程无解,得到x−3=0,即x=3,
把x=3代入整式方程得:3m−3=9,
解得:m=4,
综上,m的值为1或4,
故选:D.
此题考查了分式方程的解,在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.
5、B
【解析】
首先根据勾股定理计算出AC的长,进而得到AD的长,再根据A点表示0,可得D点表示的数.
【详解】
解:
则AD=
∵A点表示0,
∴D点表示的数为:-
故选:B.
此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.同时考查了实数与数轴.
6、C
【解析】
根据菱形的性质,已知AC,BD的长,然后根据菱形的面积公式可求解.
【详解】
解:由图可知,AB=BC=CD=DA,
∴该四边形为菱形,
又∵AC=4,BD=6,
∴菱形的面积为4×6×=1.
故选:C.
主要考查菱形的面积公式:两条对角线的积的一半,同时也考查了菱形的判定.
7、B
【解析】
根据分式定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.
【详解】
是分式,共2个,故选:B.
本题考查分式的定义,解题的关键是掌握分式的定义.
8、D
【解析】
根据二次根式的性质和分式的意义,被开方数大于等于1,分母不等于1,就可以求解.
【详解】
根据二次根式有意义,分式有意义得:x+1≥1且x≠1,
解得:x≥-1且x≠1.
故选D.
本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据G、F分别为AD和DE的中点,欲使GF最小,则只要使AE为最短,即AE必为△ABC中BC边上的高,再利用三角形的中位线求解即可.
【详解】
解:∵G、F分别为AD和DE的中点,∴线段GF为△ADE的边AD及DE上的中位线,∴GF=AE,欲使GF最小,则只要使AE为最短,∴AE必为△ABC中BC边上的高,∵四边形ABCD为一平行四边形且AB=4、∠ABC=60°,作AE⊥BC于E,E为垂足,∴∠BAE=30°,∴BE=2, ∴AE=,∴GF=AE=.故答案为.
本题考查了最短路径,点到直线的距离及三角形的中位线定理,掌握点到直线的距离及三角形的中位线定理是解题的关键.
10、.
【解析】
解:因为点M(a,2)是一次函数y=2x-3图象上的一点,
∴2=2a-3,
解得a=
故答案为:.
11、
【解析】
用树状图将所有的情况数表示出来,然后找到恰好排列成“绿色闵行垃圾分类要先行”的情况数,利用所求情况数与总数之比求概率即可.
【详解】
由树状图可知,总共有6种情况,其中恰好排列成“绿色闵行垃圾分类要先行”的情况只有1种,所以恰好排列成“绿色闵行垃圾分类要先行”的概率为 .
故答案为: .
本题主要考查用树状图求随机事件的概率,掌握树状图的画法及概率公式是解题的关键.
12、
【解析】
证明△BAE≌△CAD得到,从而证得,再得到AEBF是平行四边形,可得AE=BF,在三角形BCF中求出BF即可.
【详解】
作于H,
∵是等边三角形,,
BC=AC=6
在中, CF=4,
∵是等边三角形,是等边三角形
AC=AB,AD=AE,
∵
AEBF是平行四边形
AE=BF=
本题考查全等三角形的判定和性质、平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
13、
【解析】
【分析】根据分式的加减法法则进行计算即可得答案.
【详解】原式=
=
=,
故答案为.
【点睛】本题考查分式的加减运算,熟练掌握分式加减的运算法则是解题的关键,本题属于基础题.
三、解答题(本大题共5个小题,共48分)
14、(1) ,画图形见解析;(2)
【解析】
(1)将点代入,运用待定系数法求解即可;
(2)求出与x轴及y轴的交点坐标,然后根据面积公式求解即可.
【详解】
解:(1)∵点A(2,0)在函数y=kx+3的图象上,
∴2k+3=0,解得k=,
函数解析式为,
图像如下图所示:
(2)在中,令y=0,即,解得x=2,
令x=0,即,解得y=3,
∴函数图象与x轴、y轴分别交于点B(2,0)和A(0,3),
∴该函数图象与坐标轴围成的三角形的面积即为三角形AOB的面积,
∴.
本题考查待定系数法求函数解析式及三角形的面积的知识,难度不大,关键是正确得出函数解析式及坐标与线段长度的转化.
15、(1)见解析;(2)S四边形ADOE =.
【解析】
(1) 根据矩形的性质有OA=OB=OC=OD,根据四边形ADOE是平行四边形,得到OD∥AE,AE=OD. 等量代换得到AE=OB.即可证明四边形AOBE为平行四边形.根据有一组邻边相等的平行四边形是菱形即可证明.
(2)根据菱形的性质有∠EAB=∠BAO.根据矩形的性质有AB∥CD,根据平行线的性质有∠BAC=∠ACD,求出∠DCA=60°,求出AD=.根据面积公式SΔADC,即可求解.
【详解】
(1)证明:∵矩形ABCD,
∴OA=OB=OC=OD.
∵平行四边形ADOE,
∴OD∥AE,AE=OD.
∴AE=OB.
∴四边形AOBE为平行四边形.
∵OA=OB,
∴四边形AOBE为菱形.
(2)解:∵菱形AOBE,
∴∠EAB=∠BAO.
∵矩形ABCD,
∴AB∥CD.
∴∠BAC=∠ACD,∠ADC=90°.
∴∠EAB=∠BAO=∠DCA.
∵∠EAO+∠DCO=180°,
∴∠DCA=60°.
∵DC=2,
∴AD=.
∴SΔADC=.
∴S四边形ADOE =.
考查平行四边形的判定与性质,矩形的性质,菱形的判定与性质,解直角三角形,综合性比较强.
16、m=-2,n=-2,B(1,-2).
【解析】
利用待定系数法即可解决问题,根据对称性或利用方程组确定点B坐标.
【详解】
解:∵直线y=mx与双曲线相交于A(-1,2),
∴m=-2,n=-2,
∵A,B关于原点对称,
∴B(1,-2).
本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,属于中考常考题型.
17、(1)答案见解析;(2)答案见解析.
【解析】
(1)分别作出点A、B、C向右平移5个方格所得对应点,再顺次连接可得;
(2)分别作出点A、C绕点B顺时针方向旋转所得对应点,再顺次连接可得.
【详解】
解:如图所示,(1)即为平移后的图形;
(2)即为旋转后的图形.
本题主要考查作图旋转变换、平移变换,解题的关键是根据旋转变换和平移变换的定义作出变换后的对应点.
18、(1)A′坐标为(4,7),B′坐标为(10,4);(2)点C′的坐标为(3a-2,3b-2 ) .
【解析】
(1)根据题目的叙述,正确地作出图形,然后确定各点的坐标即可;(2)由(1)中坐标分析出x值变化=3x-2,y值变化=3y-2,从而使问题得解.
【详解】
解:(1)依题意知,以点T(1,1)为位似中心,按比例尺(TA′:TA)3:1的位似中心的同侧将TAB放大为△TA′B′,故TA′=3TA, B′T=3BT.则延长如图,连结A’B’得△TA′B′.
由图可得A′坐标为(4,7),B′坐标为(10,4);
(2) 易知A、B坐标由A(2,3),B(4,2)变化为A′(4,7),B′(10,4);
则x值变化=3x-2,y值变化=3y-2;
若C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标,则变化后点C的对应点C′的坐标为:C′(3a-2,3b-2)
本题难度中等,主要考查了作图-位似变换,正确理解位似变换的定义,会进行位似变换的作图是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、且.
【解析】
试题分析:分式方程去分母得:.
∵分式方程解为负数,∴.
由得和
∴的取值范围是且.
考点:1.分式方程的解;2.分式有意义的条件;3.解不等式;4.分类思想的应用.
20、(-2,0)或(4,0)或(2,2)
【解析】
分三种情况:①BC为对角线时,②AB为对角线时,③AC为对角线时;由平行四边形的性质容易得出点D的坐标.
【详解】
解:分三种情况:①AB为对角线时,点D的坐标为(-2,0);
②BC为对角线时,点D的坐标为(4,0);
③AC为对角线时,点D的坐标为(2,2).
综上所述,点D的坐标可能是(-2,0)或(4,0)或(2,2).
故答案为(-2,0)或(4,0)或(2,2).
本题考查平行四边形的性质、坐标与图形的性质;熟练掌握平行四边形的性质是解题的关键.
21、2
【解析】
分式的值为1的条件是:(1)分子为1;(2)分母不为1.两个条件需同时具备,缺一不可.据此可以解答本题.
【详解】
解:由题意可得|x|-2=1且x+2≠1,
解得x=2.
故答案是:2.
考查了分式的值为零的条件,由于该类型的题易忽略分母不为1这个条件,所以常以这个知识点来命题.
22、
【解析】
利用函数的增减性可以判定其比例系数的符号,从而确定m的取值范围.
【详解】
解:∵一次函数y=(m-1)x+2,y随x的增大而减小,
∴m-1<0,
∵m<1,
故答案为:m<1.
本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0.
23、1
【解析】
先解分式方程得x=,由分式方程有正整数解,得出a+1=4,或a+1=1,且a≠0,解出a的值,最后根据a为非负整数即可得出答案.
【详解】
解:方程两边同时乘以x﹣1,得:
3﹣ax=3+1(x﹣1),
解得x=,
∵是正整数,且≠1,
∴a+1=4,或a+1=1,且a≠0,
a=1或a=-1(不符合题意,舍去)
∴非负整数a的值为:1,
故答案为:1.
本题考查了解分式方程,注意不要漏掉分母不能为零的情况.
二、解答题(本大题共3个小题,共30分)
24、 (1)证明见解析;(2)AD=12.
【解析】
(1)根据平行四边的判定与性质,可得答案;
(2)根据AAS证明△AGF≌△BGE,再根据全等三角形的性质与平行四边形的性质即可求解.
【详解】
(1)证明:∵四边形是平行四边形,
∴,
∵,
∴四边形是平行四边形,
∴;
(2)解:∵,
∴,
∵点是的中点,
∴,
在与中,
,
∴,
∴,
∵,
∴,
∵四边形是平行四边形,
∴.
本题考查了平行四边形的判定与性质,全等三角形的判定与性质,关键是证明△AGF≌△BGE.
25、1
【解析】
试题分析:由题意知:光线AP与光线PC,∠APB=∠CPD,∴Rt△ABP∽Rt△CDP,∴,∴CD==1(米).故答案为1.
考点:相似三角形的应用.
26、△ABC是等腰三角形;理由见解析
【解析】
首先将已知等式进行因式分解,然后由三角形三边都大于0,解其方程得到,即可判定.
【详解】
∵,,是的三边,都大于0
∴
∴△ABC是等腰三角形.
此题主要考查因式分解的应用,利用三角形三边都大于0,解其方程即可解题.
题号
一
二
三
四
五
总分
得分
甲
乙
丙
丁
平均数/环
方差/环
2024-2025学年河南省数学九上开学质量检测模拟试题【含答案】: 这是一份2024-2025学年河南省数学九上开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河北沧州数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年河北沧州数学九上开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年北京丰台九上数学开学达标检测模拟试题【含答案】: 这是一份2024-2025学年北京丰台九上数学开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。