2024-2025学年湖南省邵阳市大祥区数学九上开学学业质量监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)A、B两地相距20千米,甲、乙两人都从A地去B地,图中和分别表示甲、乙两人所走路程(千米)与时刻(小时)之间的关系.下列说法:
①乙晚出发1小时;
②乙出发3小时后追上甲;
③甲的速度是4千米/小时;
④乙先到达B地.
其中正确的个数是( )
A.1B.2C.3D.4
2、(4分)某商品的价格为元,连续两次降后的价格是元,则为( )
A.9B.10C.19D.8
3、(4分)若在实数范围内有意义,则a的取值范围是( )
A.a≥B.a≤C.a>D.a<
4、(4分)如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是( )
A.2B.3C.5D.6
5、(4分)下列式子中,属于最简二次根式的是
A.B.C.D.
6、(4分)函数与()在同一平面直角坐标系内的图象可能是( )
A.B.C.D.
7、(4分)如图,DC⊥AC于C,DE⊥AB于E,并且DE=DC,则下列结论中正确的是( )
A.DE=DFB.BD=FDC.∠1=∠2D.AB=AC
8、(4分)如图,长方形ABCD中,BE、CE分别平分∠ABC和∠DCB,点E在AD上,①△ABE≌△DCE;②△ABE和△DCE都是等腰直角三角形;③AE=DE;④△BCE是等边三角形,以上结论正确的有( )
A.1个B.2个C.4个D.3个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若关于x的分式方程=2a无解,则a的值为_____.
10、(4分)如图,我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,且抛物线的解析式为,则半圆圆心M的坐标为______.
11、(4分)如图,已知四边形ABCD是平行四边形,将边AD绕点D逆时针旋转60°得到DE,线段DE交边BC于点F,连接BE.若∠C+∠E=150°,BE=2,CD=2,则线段BC的长为_____.
12、(4分)如图,已知矩形的边将矩形的一部分沿折叠,使点与点重合,点的对应点为,则的长是______将绕看点顺时针旋转角度得到直线分别与射线,射线交于点当时,的长是___________.
13、(4分)一个多边形的内角和等于 1800°,它是______边形.
三、解答题(本大题共5个小题,共48分)
14、(12分)甲、乙两名运动员进行长跑训练,两人距终点的路程(米)与跑步时间(分)之间的函数关系如图所示,根据图象所提供的信息解答问题:
(1)他们在进行 米的长跑训练,在0<<15的时间内,速度较快的人是 (填“甲”或“乙”);
(2)求乙距终点的路程(米)与跑步时间(分)之间的函数关系式;
(3)当=15时,两人相距多少米?
(4)在15<<20的时间段内,求两人速度之差.
15、(8分)定义:如图(1),,,,四点分别在四边形的四条边上,若四边形为菱形,我们称菱形为四边形的内接菱形.
动手操作:
(1)如图2,网格中的每个小四边形都为正方形,每个小四边形的顶点叫做格点,由个小正方形组成一个大正方形,点、在格点上,请在图(2)中画出四边形的内接菱形;
特例探索:
(2)如图3,矩形,,点在线段上且,四边形是矩形的内接菱形,求的长度;
拓展应用:
(3)如图4,平行四边形,,,点在线段上且,
①请你在图4中画出平行四边形的内接菱形,点在边上;
②在①的条件下,当的长最短时,的长为__________
16、(8分)计算:(2﹣1)2+(+4)(-4).
17、(10分)解不等式组:, 并把解集在数轴上表示出来.
18、(10分)某校计划厂家购买A、B两种型号的电脑,已知每台A种型号电脑比每台B种型号电脑多01.万元,且用10万元购买A种型号电脑的数量与用8万元购买B种型号电脑的数量相同;
(1)求A、B两种型号电脑单价各为多少万元?
(2)学校预计用不多于9.2万元的资金购进20台电脑,其中A种型号电脑至少要购进10台,请问有哪几种购买方案?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形中,,,则的长为_______________.
20、(4分)如图,直线y=x+1与坐标轴相交于A、B两点,在其图象上取一点A1,以O、A1为顶点作第一个等边三角形OA1B1,再在直线上取一点A2,以A2、B1为顶点作第二个等边三角形A2B1B2,…,一直这样作下去,则第10个等边三角形的边长为_____.
21、(4分)请写出一个过点(0,1),且y随着x的增大而减小的一次函数解析式_____.
22、(4分)成立的条件是___________________.
23、(4分)函数中自变量x的取值范围是_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:(+2)(-2)+
25、(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,1),B(0,3),C(0,1).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;
(2)分别连接AB1,BA1后,求四边形AB1A1B的面积.
26、(12分)小明为了解政府调整水价方案的社会反响,随机访问了自己居住小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1、图2.
小明发现每月每户的用水量为5 -35 之间,有8户居民对用水价格调价涨幅抱无所谓,不会考虑用水方式的改变.根据小明绘制的图表和发现的信息,完成下列问题:
(1) ,小明调查了 户居民,并补全图1;
(2)每月每户用水量的中位数和众数分别落在什么范围?
(3)如果小明所在小区有1800户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题分析:根据函数的图像直接读取信息:①乙比甲晚出发1小时,正确;
②乙应出发2小时后追上甲,错误;
③甲的速度为12÷3=4(千米/小时),正确;甲到达需要20÷4=5(小时);乙的速度为12÷2=6(千米/小时),SI④乙到达需要的时间为20÷6=3(小时),即乙在甲出发4小时到达,甲5小时到达,故乙比甲先到.正确.
故选C
考点:一次函数的图像与性质
2、B
【解析】
第一次降价后的价格为100(1-x%),第二次降价后的价格为100(1-x%)(1-x%).
【详解】
由题意列出方程:100(1-x%)2=81
(1-x%)2=0.81
1-x%=±0.9
x=10或190
根据题意,舍弃x=190,则x=10,
故选择B.
要理解本题中“连续两次降价”的含义是,第二次降价前的基础价格是第一次降价后的价格.
3、A
【解析】
直接利用二次根式有意义则2a+3≥0,进而得出答案.
【详解】
解:在实数范围内有意义,则2a+3≥0,
解得:.
故选:A.
此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.
4、C
【解析】
试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案选C.
考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.
5、B
【解析】
判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件 (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式是否同时满足,同时满足的就是最简二次根式,否则就不是.
∵,∴属于最简二次根式.故选B.
6、D
【解析】
先根据一次函数的性质判断出a取值,再根据反比例函数的性质判断出a的取值,二者一致的即为正确答案.
【详解】
A.函数y=ax﹣1的图象应该交于y轴的负半轴,故错误;
B.由函数y=ax﹣1的图象可知a>0,由函数y(a≠0)的图象可知a<0,错误;
C.函数y=ax﹣1的图象应该交于y轴的负半轴,故错误;
D.由函数y=ax﹣1的图象可知a>0,由函数y(a≠0)的图象可知a>0,正确.
故选D.
本题考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.
7、C
【解析】
分析:如图,由已知条件判断AD平分∠BAC即可解决问题.
详解:如图,∵DC⊥AC于C,DE⊥AB于E,且DE=DC,∴点D在∠BAC的角平分线上,∴∠1=∠1.
故选C.
点睛:该题主要考查了角平分线的判定及其性质的应用问题;牢固掌握角平分线的性质是解题的关键.
8、D
【解析】
根据矩形性质得出∠A=∠D=90°,AB=CD,AD∥BC,推出∠AEB=∠EBC,∠DEC=∠ECB,求出∠AEB=∠ABE,∠DCE=∠DEC,推出AB=AE,DE=DC,推出 AE=DE,根据SAS推出△ABE≌△DCE,推出BE=CE即可.
【详解】
∵四边形ABCD是矩形,
∴∠A=∠D=90°,AB=CD,AD∥BC,
∴∠AEB=∠EBC,∠DEC=∠ECB,
∵BE、CE分别平分∠ABC和∠DCB,
∴∠ABE=∠EBC,∠DCE=∠ECB,
∴∠AEB=∠ABE,∠DCE=∠DEC,
∴AB=AE,DE=DC,
∴AE=DE,
∴△ABE和△DCE都是等腰直角三角形,
在△ABE和△DCE中,
,
∴△ABE≌△DCE(SAS),
∴BE=CE,∴①②③都正确,
故选D.
此题考查全等三角形的判定与性质,等腰直角三角形,等边三角形的判定,解题关键在于掌握各判定定理.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1或
【解析】
分析:直接解分式方程,再利用当1-2a=0时,当1-2a≠0时,分别得出答案.
详解:去分母得:
x-3a=2a(x-3),
整理得:(1-2a)x=-3a,
当1-2a=0时,方程无解,故a=;
当1-2a≠0时,x==3时,分式方程无解,
则a=1,
故关于x的分式方程=2a无解,则a的值为:1或.
故答案为1或.
点睛:此题主要考查了分式方程的解,正确分类讨论是解题关键.
10、(1,0).
【解析】
当y=0时,,解得:x1=﹣1,x2=3,故A(﹣1,0),B(3,0),则AB的中点为:(1,0).
故答案为(1,0).
11、2
【解析】
过C作CM⊥DE于M,过E作EN⊥BC于N,根据平行四边形的性质得到BC∥AD,根据平行线的性质得到∠BFE=∠DFC=∠ADE,根据旋转的性质得到∠BFE=∠DFC=∠ADE=60°,推出∠DCM=∠EBN,根据相似三角形的性质得到CM=BN,DM=EN,得到FM=BN,设FM=BN=x,EN=y,则DM=y,CM=x,根据勾股定理即可得到结论.
【详解】
解:过C作CM⊥DE于M,过E作EN⊥BC于N,
∵四边形ABCD是平行四边形,
∴BC∥AD,
∴∠BFE=∠DFC=∠ADE,
∵将边AD绕点D逆时针旋转60°得到DE,
∴∠BFE=∠DFC=∠ADE=60°,
∴∠FCM=∠FBN=30°,
∵∠DCF+∠BEF=150°,
∴∠DCM+∠BEN=90°,
∵∠BEN+∠EBN=90°,
∴∠DCM=∠EBN,
∴△DCM∽△EBN,
∴==,
∴CM=BN,DM=EN,
在Rt△CMF中,CM=FM,
∴FM=BN,
设FM=BN=x,EN=y,则DM=y,CM=x,
∴CF=2x,EF=y,
∵BC=AD=DE,
∴y+x+y=2x+y+x,
∴x=y,
∵x2+y2=4,
∴y=,x=,
∴BC=2,
故答案为:2.
【点评】
本题考查了平行四边形的性质,相似三角形的判定和性质,勾股定理,旋转的性质,正确的作出辅助线是解题的关键.
12、, .
【解析】
(1)过点F作于点H,求出EH长,利用勾股定理求解;
(2)通过证明四边形为菱形,得出EM的长,继而结合(1)即可得出FM的值.
【详解】
解:(1)过点F作于点H
在矩形ABCD中,,由折叠可知,
在中,根据勾股定理得 即,解得 ,则
由题中条件可知四边形CFHD为矩形
在中,根据勾股定理得,即,
解得 .
(2)如图,画出旋转后的图形
由折叠得,
四边形为平行四边形
由旋转得
平行四边形为菱形
本题考查了折叠与旋转,矩形的性质,菱形的判定与性质以及勾股定理,难度较大,灵活运用折叠与旋转的性质是解题的关键.
13、十二
【解析】
根据多边形的内角和公式列方程求解即可;
【详解】
设这个多边形是n边形,
由题意得,(n-2)•180°=1800°,
解得n=12;
故答案为十二
本题考查了多边形的内角和,关键是掌握多边形的内角和公式.
三、解答题(本大题共5个小题,共48分)
14、(1)5000;甲;(2);(3)750米;(4)150米/分.
【解析】
(1)根据x=0时,y=5000可知,他们在进行5000米的长跑训练,在0<<15的时间内,,所以甲跑的快;
(2)分段求解析式,在0<<15的时间内,由点(0,5000),(15,2000)来求解析式;在15≤≤20的时间内,由点(15,2000),(20,0)来求解析式;
(3)根据题意求得甲的速度为250米/分,然后计算甲距离终点的路程,再计算他们的距离;
(4)在15<<20的时间段内,求得乙的速度,然后计算他们的速度差.
【详解】
(1)根据图象信息可知,他们在进行5000米的长跑训练,
在0
把(0,5000),(15,2000)代入解析式,解得k=-200,b=5000,
所以y=-200x+5000;
②在15≤≤20内,设,
把(15,2000),(20,0)代入解析式,解得,,
所以y=-400x+8000,
所以乙距终点的路程(米)与跑步时间(分)之间的函数关系式为:;
(3)甲的速度为5000÷20=250(米/分),250×15=3750米,距终点5000-3750=1250米,
此时乙距终点2000米,所以他们的距离为2000-1250=750米;
(4)在15<<20的时间段内,乙的速度为2000÷5=400米/分,甲的速度为250米/分,所以他们的速度差为400-250=150米/分.
考点:函数图象;求一次函数解析式.
15、(1)详见解析;(2)3;(3)①详见解析;②的长为
【解析】
(1)以EF为边,作一个菱形,使其各边长都为 ;
(2)如图2,连接HF,证明△DHG≌△BFE(AAS),可得CG=3;
(3)①根据(2)中可知DG=BE=2,根据对角线垂直平分作内接菱形EFGH;
②如图5,当F与C重合,则A与H重合时,此时BF的长最小,就是BC的长,根据直角三角形30度角的性质和勾股定理计算可得结论.
【详解】
(1)如图2所示,菱形即为所求;
(2)如图3,连接,
四边形是矩形,,,,,
四边形是菱形,,,,,即,
,;
(3)①如图4所示,由(2)知:,,
作法:作,连接,再作的垂直平分线,交、于、,得四边形即为所求作的内接菱形;
②如图5,当与重合,则与重合时,此时的长最小,过作于,中,,,,,
四边形是菱形,,
,
即当的长最短时,的长为
本题是四边形的综合题,主要考查新定义−四边形ABCD的内接菱形,基本作图−线段的垂直平分线,菱形,熟练掌握基本作图及平行四边形、菱形和矩形的性质是解题的关键.
16、-4
【解析】
利用完全平方公式和平方差公式计算.
【详解】
解:原式
.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
17、-3<x≤1
【解析】
分别解不等式,在数轴上表示出解集,找出解集的公共部分即可.
【详解】
,
解不等式①得:,
解不等式②得:
∴原不等式组的解集为-3<x≤1
解集在数轴上表示为:
考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.
18、(1)A、B两种型号电脑单价分别为0.5万元和0.4万元;(2)有三种方案:购买A种型号电脑10台,B种型号电脑10台;购买A种型号电脑11台,B种型号电脑9台;购买A种型号电脑12台,B种型号电脑8台.
【解析】
(1)A种型号的电脑每台价格为x万元,则B种型号的电脑每台价格为(x+0.1)万元,根据题意可列出分式方程进行求解;
(2)设购买A种型号电脑y台,则购买B种型号电脑(20-y)台,根据题意可列出不等式组即可求解.
【详解】
(1)A种型号的电脑每台价格为x万元,则B种型号的电脑每台价格为(x-0.1)万元,根据题意得,
解得x=0.5,
经检验,x=0.5是原方程的解,x-0.1=0.4,
故A、B两种型号电脑单价分别为0.5万元和0.4万元.
(2)设购买A种型号电脑y台,则购买B种型号电脑(20-y)台,
根据题意得,解得y≤12,
又A种型号电脑至少要购进10台,
∴10≤y≤12,
故有三种方案:
购买A种型号电脑10台,B种型号电脑10台;
购买A种型号电脑11台,B种型号电脑9台;
购买A种型号电脑12台,B种型号电脑8台;
此题主要考查分式方程、不等式的应用,解题的关键是根据题意找到等量关系、不等式关系进行列式求解.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4
【解析】
首先由对边分别平行可判断四边形ABCD为平行四边形,连接AC和BD,过A点分别作DC和BC的垂线,垂足分别为F和E,通过证明△ADF≌△ABC来证明四边形ABCD为菱形,从而得到AC与BD相互垂直平分,再利用勾股定理求得BD长度.
【详解】
解:连接AC和BD,其交点为O,过A点分别作DC和BC的垂线,垂足分别为F和E,
∵AB∥CD,AD∥BC,
∴四边形ABCD为平行四边形,
∴∠ADF=∠ABE,
∵两纸条宽度相同,
∴AF=AE,
∵
∴△ADF≌△ABE,
∴AD=AB,
∴四边形ABCD为菱形,
∴AC与BD相互垂直平分,
∴BD=
故本题答案为:4
本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.
20、
【解析】
作A1D⊥x轴于D,A2E⊥x轴于E,根据等边三角形的性质得OD=B1D,B1E=B2E,∠OA1D=30°,∠B1A2E=30°,设OD=t,B1E=a,则A1D=t,A2E=a,则A1点坐标为(t, t),把A1的坐标代入y=x+1,可解得t=,于是得到B1点的坐标为(,0),OB1=,则A2点坐标为(+a, a),然后把A2的坐标代入y=x+1可解得a=,B1B2=2,同理得到B2B3=4,…,按照此规律得到B9B10=29•.
【详解】
解:作A1D⊥x轴于D,A2E⊥x轴于E,如图,
∵△OA1B1、△B1A2B2均为等边三角形,
∴OD=B1D,B1E=B2E,∠OA1D=30°,∠B1A2E=30°,
设OD=t,B1E=a,则A1D=t,A2E=a,
∴A1点坐标为(t, t),
把A1(t, t)代入y=x+1,得t=t+1,解得t=,
∴OB1=,
∴A2点坐标为(+a, a),
把A2(+a, a)代入y=x+1,得a=(+a)+1,解得a=,
∴B1B2=2,
同理得到B2B3=22•,
…,
按照此规律得到B9B10=29•.
故选答案为29•.
本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等边三角形的性质.
21、y=﹣x+1
【解析】
分析:由y随着x的增大而减小可得出k<0,取k=-1,再根据一次函数图象上点的坐标特征可得出b=1,此题得解.
详解:设该一次函数的解析式为y=kx+b.
∵y随着x的增大而减小,
∴k<0,
取k=﹣1.
∵点(0,1)在一次函数图象上,
∴b=1.
故答案为y=﹣x+1.
点睛:本题考查了一次函数的性质以及一次函数图象上点的坐标特征,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.
22、x≥1
【解析】
分析:根据二次根式有意义的条件可得x+1≥0,x-1≥0,求出x的范围.
详解:由题意得,x+1≥0,x-1≥0,
解得:x≥-1,x≥1,
综上所述:x≥1.
故答案为:x≥1.
点睛:本题考查了二次根式的乘除法,解答本题的关键是掌握二次根式有意义的条件.
23、x≥-3
【解析】
根据被开方数必须大于或等于0可得:3+x≥0,解不等式即可.
【详解】
因为要使有意义,
所以3+x≥0,
所以x≥-3.
故答案是:x≥-3.
本题考查了函数自变量的取值范围,主要涉及二次根式有意义的条件,解题关键是熟记二次根式有意义的条件为:被开方数必须大于或等于0.
二、解答题(本大题共3个小题,共30分)
24、1
【解析】
直接利用平方差公式以及完全平方公式分别化简得出答案.
【详解】
解:原式=3-4+2=1.
此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.
25、(1)画图见解析;(2)1
【解析】
试题分析:(1)利用网格特点,延长AC到A1使A1C=AC,延长BC到B1使B1C=BC,C点的对应点C1与C点重合,则△A1B1C1满足条件;
(2)四边形AB1A1B的对角线互相垂直平分,则四边形AB1A1B为菱形,然后利用菱形的面积公式计算即可.
试题解析:(1)如图,△A1B1C1为所作:
(2)四边形AB1A1B的面积=×6×4=1.
考点:作图-旋转变换;作图题.
26、(1)210,96,见解析;(2)中位数落在15 m3−20 m3之间,众数落在10 m3−15 m3之间;(3)1050户.
【解析】
(1)首先根据圆周角等于360°,求出n的值是多少即可;然后用“对水价格调价涨幅抱无所谓态度”的居民的户数除以它所占的百分比,求出小明调查了多少户居民;最后计算用水量在15m3−20m3之间的居民的户数,补全图1即可.
(2)根据中位数和众数的含义分别进行解答即可.
(3)用小明所在小区居民的户数乘以样本中“视调价涨幅采取相应的用水方式改变”的居民户数占被调查的居民户数的百分比即可.
【详解】
解:(1)n=360−30−120=210,
∵8÷=96(户)
∴小明调查了96户居民.
用水量在15m3−20m3之间的居民的户数是:96−(15+22+18+16+5)=20(户).
补全图1如下:
(2)∵96÷2=48(户),15+22=37(户),15+22+20=57(户),
∴每月每户的用水量在5m3−15m3之间的有37户,每月每户的用水量在5m3−20m3之间的有57户,
∴把每月每户用水量这组数据从小到大排列后,第48个、第49个数在15 m3−20 m3之间,
∴第48个、第49个数的平均数也在15 m3−20 m3之间,
∴每月每户用水量的中位数落在15 m3−20 m3之间;
∵在这组数据中,10 m3−15 m3之间的数据出现了22次,出现的次数最多,
∴每月每户用水量的众数落在10 m3−15 m3之间;
(3)1800×=1050(户),
答:“视调价涨幅采取相应的用水方式改变”的居民户数有1050户.
此题主要考查了条形统计图和扇形统计图、众数、中位数以及用样本估计总体,要善于从统计图中获取信息,并能利用获取的信息解决实际问题.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年湖北宜昌九上数学开学学业质量监测试题【含答案】: 这是一份2024-2025学年湖北宜昌九上数学开学学业质量监测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年合肥市包河数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年合肥市包河数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年贵州省铜仁松桃县联考数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年贵州省铜仁松桃县联考数学九上开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。