2024-2025学年安徽省潜山市第四中学数学九年级第一学期开学复习检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)小军自制的匀速直线运动遥控车模型甲、乙两车同时分别从、出发,沿直线轨道同时到达处,已知乙的速度是甲的速度的1.5倍,甲、乙两遥控车与处的距离、(米)与时间(分钟)的函数关系如图所示,则下列结论中:①的距离为120米;②乙的速度为60米/分;③的值为;④若甲、乙两遥控车的距离不少于10米时,两车信号不会产生互相干扰,则两车信号不会产生互相干扰的的取值范围是,其中正确的有( )个
A.1B.2C.3D.4
2、(4分)下列四组线段中,不能构成直角三角形的是( )
A.4,5,6B.6,8,10C.7,24,25D.5,3,4
3、(4分)下列各曲线中能表示y是x的函数的是( )
A.B.C.D.
4、(4分)《中国诗词大会》是央视科教频道自主研发的一档大型文化益智节目,节目带动全民感受诗词之趣,分享诗词之美,从古人的智慧和情怀中汲取营养,涵养心灵.比赛中除了来自复旦附中的才女武亦姝表现出色外,其他选手的实力也不容小觑.下表是随机抽取的10名挑战者答对的题目数量的统计表,则这10名挑战者答对的题目数量的中位数为答对题数( )
A.4B.5C.6D.7
5、(4分)下列根式中属于最简二次根式的是( )
A.B.C.D.
6、(4分)如图,在中,分别以点为圆心,大于长为半径作弧,两弧交于点,作直线分别交,于点,连接,下列结论错误的是( )
A.B.C.D.平分
7、(4分)关于2、6、1、10、6的这组数据,下列说法正确的是( )
A.这组数据的众数是6B.这组数据的中位数是1
C.这组数据的平均数是6D.这组数据的方差是10
8、(4分)估计5﹣的值应在( )
A.4和5之间B.5和6之间C.6和7之间D.7和8之间
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,点是边上的动点,已知,,,现将沿折叠,点是点的对应点,设长为.
(1)如图1,当点恰好落在边上时,______;
(2)如图2,若点落在内(包括边界),则的取值范围是______.
10、(4分)当时,二次根式的值是______.
11、(4分)如图,菱形的对角线相交于点,若,则菱形的面积=____.
12、(4分)若有意义,则的取值范围是_______
13、(4分)若分式的值为零,则x的值为_____
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系中,△ABC的顶点A、B分别落在x轴、y轴的正半轴上,顶点C在第一象限,BC与x轴平行.已知BC=2,△ABC的面积为1.
(1)求点C的坐标.
(2)将△ABC绕点C顺时针旋转90°,△ABC旋转到△A1B1C的位置,求经过点B1的反比例函数关系式.
15、(8分)已知关于x的方程(a﹣1)x2+2x+a﹣1=1.
(1)若该方程有一根为2,求a的值及方程的另一根;
(2)当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.
16、(8分)某汽车制造商对新投入市场的两款汽车进行了调查,这两款汽车的各项得分如下表所示:
(得分说明:3分﹣﹣极佳,2分﹣﹣良好,1分﹣﹣尚可接受)
(1)技术员认为安全性能、省油效能、外观吸引力、内部配备这四项的占比分别为30%,30%,20%,20%,并由此计算得到A型汽车的综合得分为2.2,B型汽车的综合得分为_____;
(2)请你写出一种各项的占比方式,使得A型汽车的综合得分高于B型汽车的综合得分.(说明:每一项的占比大于0,各项占比的和为100%)
答:安全性能:_____,省油效能:_____,外观吸引力:_____,内部配备:_____.
17、(10分)如图,正方形ABCD的边长为4,E是线段AB延长线上一动点,连结CE.
(1)如图1,过点C作CF⊥CE交线段DA于点F.
①求证:CF=CE;
②若BE=m(0<m<4),用含m的代数式表示线段EF的长;
(2)在(1)的条件下,设线段EF的中点为M,探索线段BM与AF的数量关系,并用等式表示.
(3)如图2,在线段CE上取点P使CP=2,连结AP,取线段AP的中点Q,连结BQ,求线段BQ的最小值.
18、(10分)若a=,b=,请计算a2+b2+2ab的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离AE、CF分别是1cm、2cm,则线段EF的长为 ______cm.
20、(4分)如果不等式组 的解集是,那么的取值范围是______.
21、(4分)如图,直线AB,IL,JK,DC,相互平行,直线AD,IJ、LK、BC互相平行,四边形ABCD面积为18,四边形EFGH面积为11,则四边形IJKL面积为____.
22、(4分)如图,在平面直角坐标系中,O为原点,四边形OABC是矩形,A(-10,0),C(0,3),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标是 ______ .
23、(4分)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E,若AB=8,AD=6,则EC=_____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)阅读下列题目的解题过程:
已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.
解:∵a2c2﹣b2c2=a4﹣b4 (A)
∴c2(a2﹣b2)=(a2+b2)(a2﹣b2) (B)
∴c2=a2+b2 (C)
∴△ABC是直角三角形
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ;
(2)错误的原因为: ;
(3)本题正确的结论为: .
25、(10分)先化简,然后a在﹣1、1、2三个数中任选一个合适的数代入求值.
26、(12分)已知,求代数式的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据题意和函数图象中的数据可以判断各个小题中的结论是否成立,从而可以解答本题.
【详解】
由图可得,
AC的距离为120米,故①正确;
乙的速度为:(60+120)÷3=60米/分,故②正确;
a的值为:60÷60=1,故③错误;
令[60+(120÷3)t]-60t≥10,得t≤,
即若甲、乙两遥控车的距离不少于10米时,两车信号不会产生相互干扰,则两车信号不会产生相互干扰的t的取值范围是0≤t≤,故④正确;
故选C.
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
2、A
【解析】
由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方,即可解答.
【详解】
解:A、42+52≠62,故不是直角三角形,符合题意;
B、62+82=102,能构成直角三角形,不符合题意;
C、72+242=252,能构成直角三角形,不符合题意;
D、32+42=52,能构成直角三角形,不符合题意.
故选:A.
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
3、B
【解析】
因为对于函数中自变量x的取值,y有唯一一个值与之对应,故选B.
4、B
【解析】
将这组数据从小到大的顺序排列后,根据中位数的定义就可以求解.
【详解】
解:将这组数据从小到大的顺序排列后,处于中间位置第1和第6个数是1、1,那么由中位数的定义可知,这组数据的中位数是1.
故选:B.
本题为统计题,考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
5、A
【解析】
根据最简二次根式的定义选择即可.
【详解】
、是最简二次根式,故本选项正确;
、不是最简二次根式,故本选项错误;
、不是最简二次根式,故本选项错误;
、不是最简二次根式,故本选项错误.
故选:.
本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.
6、D
【解析】
根据题意可知DE是AB的垂直平分线,由此即可得出△AEB是等腰三角形,据此作出判断.
【详解】
由题可知,是的垂直平分线,
∴,,故A、C选项正确;
∵是等腰的外角,
∴,故B选项正确;
D无法证明,
故选:D.
本题考查了线段的垂直平分线的性质、等腰三角形的性质,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等.
7、A
【解析】
根据方差、算术平均数、中位数、众数的概念进行分析.
【详解】
数据由小到大排列为1,2,6,6,10,
它的平均数为(1+2+6+6+10)=5,
数据的中位数为6,众数为6,
数据的方差= [(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1.
故选A.
考点:方差;算术平均数;中位数;众数.
8、D
【解析】
先合并后,再根据无理数的估计解答即可.
【详解】
5−=5−2=3=,
∵7<<8,
∴5−的值应在7和8之间,
故选D.
本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2;
【解析】
(1)根据折叠的性质可得,由此即可解决问题;
(2)作AH⊥DE于H.解直角三角形求出AH、HB′、DH,再证明,求出EB′即可解决问题;
【详解】
解:(1)∵折叠,
∴.
∵,
∴,
∴,
∴,
∴.
(2)当落在上时,过点作于点.
∵,,
∴,
∴.
在中,,
∴.
∵,
∴,
∴.
∴,
∴,
∴.
本题考查翻折变换、平行四边形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
10、
【解析】
把x=-2代入根式即可求解.
【详解】
把x=-2代入得
此题主要考查二次根式,解题的关键是熟知二次根式的性质.
11、3.
【解析】
先求出菱形对角线AC和BD的长度,利用菱形面积等于对角线乘积的一半求解即可.
【详解】
因为四边形ABCD是菱形,
所以AC⊥BD.
在Rt△AOB中,利用勾股定理求得BO=1.
∴BD=6,AC=2.
∴菱形ABCD面积为×AC×BD=3.
故答案为:3.
本题主要考查了菱形的性质,解题的关键是熟记菱形面积的求解方法,运用对角线求解面积是解题的最优途径.
12、
【解析】
根据二次根式有意义的条件:被开方数为非负数求解即可.
【详解】
解:代数式有意义,
,
解得:.
故答案为:.
本题考查了二次根式有意义的条件,解答本题的关键是掌握被开方数为非负数.
13、1
【解析】
分式的值为零:分子等于零,且分母不等于零,由此得到1-|x|=2且x+1≠2,从而得到x的值.
【详解】
依题意得:1-|x|=2且x+1≠2,
解得x=1.
故答案是:1.
本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.
三、解答题(本大题共5个小题,共48分)
14、(1)C(2,1);(2)经过点B1的反比例函数为y=.
【解析】
(1)过点C作CD⊥x轴于点D,BC与x轴平行可知CD⊥BC,即可求出CD的长,进而得出C点坐标;
(2)由图形旋转的性质得出CB1的长,进而可得出B1的坐标,设经过点B1(2,3)的反比例函数为,把B1的坐标代入即可得出k的值,从而得出反比例函数的解析式.
【详解】
解:(1)作CD⊥x轴于D.
∵BC与x轴平行,
∴S△ABC=BC•CD,
∵BC=2,S△ABC=1,
∴CD=1,
∴C(2,1);
(2)∵由旋转的性质可知CB1=CB=2,
∴B1(2,3).
设经过点B1(2,3)的反比例函数为,
∴3=,
解得k=6,
∴经过点B1的反比例函数为y=.
本题考查的是反比例函数综合题,涉及到图形旋转的性质及三角形的面积公式、用待定系数法求反比例函数的解析式,涉及面较广,难度适中.
15、(3)a=,方程的另一根为;(2)答案见解析.
【解析】
(3)把x=2代入方程,求出a的值,再把a代入原方程,进一步解方程即可;
(2)分两种情况探讨:①当a=3时,为一元一次方程;②当a≠3时,利用b2-4ac=3求出a的值,再代入解方程即可.
【详解】
(3)将x=2代入方程,得,解得:a=.
将a=代入原方程得,解得:x3=,x2=2.
∴a=,方程的另一根为;
(2)①当a=3时,方程为2x=3,解得:x=3.
②当a≠3时,由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.
当a=2时, 原方程为:x2+2x+3=3,解得:x3=x2=-3;
当a=3时, 原方程为:-x2+2x-3=3,解得:x3=x2=3.
综上所述,当a=3,3,2时,方程仅有一个根,分别为3,3,-3.
考点:3.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.
16、(1)2.1;(2)10%;10%;10%;50%
【解析】
(1)根据加权平均数的计算公式列式计算即可;
(2)要使得A型汽车的综合得分高于B型汽车的综合得分,根据这两款汽车的各项得分,将A型汽车高于B型汽车得分的项(内部配备)占比较高,同时将A型汽车低于B型汽车得分的项(省油效能)占比较低即可.
【详解】
(1)B型汽车的综合得分为:1×10%+2×10%+2×20%+2×20%=2.1.
故答案为2.1;
(2)∵A型汽车的综合得分高于B型汽车的综合得分,
∴各项的占比方式可以是:安全性能:10%,省油效能:10%,外观吸引力:10%,内部配备50%.
本题考查的是加权平均数的求法,掌握公式是解题的关键.
17、(1)①详见解析;②;(2)BM= AF;(3)
【解析】
(1)①根据正方形的性质以及余角的性质即可证明△DCF≌△BCE,再根据全等三角形对应边相等即可得出结论;
②根据全等三角形的性质可得DF=BE=m.在Rt△ECF中,由勾股定理即可得出结论;
(2)在直线AB上取一点G,使BG=BE,由三角形中位线定理可得FG=2BM,可以证明AF=AG.在Rt△AFG中由勾股定理即可得出结论.
(3)在AB的延长线上取点R,使BR=AB=4,连结PR和CR,由三角形中位线定理可得BQ=PR.在Rt△CBR中,由勾股定理即可得出CR的长,再由三角形三边关系定理即可得出结论.
【详解】
(1)解:①证明:∵正方形ABCD,∴BC=CD,∠DCB=∠CBE=90°.
∵CF⊥CE,∠FCE=90°,∴∠DCF=∠BCE,∴△DCF≌△BCE(ASA),∴CE=CF.
②∵△DCF≌△BCE,∴DF=BE=m,∴AF=4-m,AE=4+m,由四边形ABCD是正方形得∠A=90°,∴EF==;
(2)解:在直线AB上取一点G,使BG=BE.
∵M为EF的中点,∴FG=2BM,由(1)知,DF=BE,又AD=AB,∴AF=AG.
∵∠A=90°,∴FG=AF,∴2BM=AF,∴BM=AF.
(3)解:在AB的延长线上取点R,使BR=AB=4,连结PR和CR.
∵Q为AP的中点,∴BQ=PR.
∵CP=2,CR==,∴PR≥CR-CP=,∴BQ的最小值为.
本题考查了正方形的性质以及三角形中位线定理.作出恰当的辅助线是解答本题的关键.
18、1.
【解析】
将a、b的值代入原式=(a+b)2计算可得.
【详解】
当a=,b=时,
原式=(a+b)2
=1.
本题主要考查考查二次根式的运算,解题的关键是掌握完全平方公式和二次根式的混合运算顺序和法则.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3
【解析】
∵四边形ABCD为正方形,
∴AB=BC,∠ABC=90°.
∵AE⊥l,CF⊥l,
∴∠E=∠F=90°,∠EAB+∠ABE=90°,∠FBC+∠BCF=90°.
∵∠ABE+∠ABC+∠FBC=180°,
∴∠ABE+∠FBC=90°,
∴∠EAB=∠FBC.
在△ABE和△BCF中,
,
∴△ABE≌△BCF(AAS),
∴BE=CF=2cm,BF=AE=1cm,
∴EF=BE+BF=2+1=3cm.
故答案为3.
20、.
【解析】
先用含有m的代数式把原不等式组的解集表示出来,然后和已知的解集比对,得到关于m的不等式,从而解答即可.
【详解】
在中,
由(1)得,,
由(2)得,,
根据已知条件,不等式组解集是.
根据“同大取大”原则.
故答案为:.
本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求出解集与已知解集比较,进而求得另一个未知数.
21、1
【解析】
由平行四边形的性质可得,,,,由面积和差关系可求四边形面积.
【详解】
解:,,
四边形是平行四边形,
,
同理可得:,,,
四边形面积四边形面积(四边形面积四边形面积),
故答案为:1.
本题考查了平行四边形的判定与性质,由平行四边形的性质得出是解题的关键.
22、(-4,3),或(-1,3),或(-9,3)
【解析】
∵A(-10,0),C(0,3),
, .
∵点D是OA的中点,
.
当 时, , .
当 时,,
,
当 时, , .
当 时,不合题意.
故答案有三种情况.
【点睛】本题考查了矩形的性质,等腰三角形的概念,平面直角坐标系中点的坐标及分类 的思想.涉及等腰三角形的计算,不管是角的计算还是腰的计算,一般都要进行分类讨论.像本题就要分四种情况进行计算.
23、
【解析】
连接EA,如图,利用基本作图得到MN垂直平分AC,所以EC=EA,设CE=x,则AE=x,DE=8-x,根据勾股定理得到62+(8-x)2=x2,然后解方程求出x即可.
【详解】
解:连接EA,如图,
由作图得到MN垂直平分AC,
∴EC=EA,
∵四边形ABCD为矩形,
∴CD=AB=8,∠D=90°,
设CE=x,则AE=x,DE=8-x,
在Rt△ADE中,62+(8-x)2=x2,解得x=,
即CE的长为.
故答案为.
本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.
二、解答题(本大题共3个小题,共30分)
24、(1)C;(2)没有考虑a=b的情况;(3)△ABC是等腰三角形或直角三角形.
【解析】【分析】(1)根据题目中的书写步骤可以解答本题;
(2)根据题目中B到C可知没有考虑a=b的情况;
(3)根据题意可以写出正确的结论.
【详解】(1)由题目中的解答步骤可得,
错误步骤的代号为:C,
故答案为:C;
(2)错误的原因为:没有考虑a=b的情况,
故答案为:没有考虑a=b的情况;
(3)本题正确的结论为:△ABC是等腰三角形或直角三角形,
故答案为:△ABC是等腰三角形或直角三角形.
【点睛】本题考查因式分解的应用、勾股定理的逆定理,解答本题的关键是明确题意,写出相应的结论,注意考虑问题要全面.
25、5
【解析】
解:原式=.
取a=2,原式.
先根据分式混合运算的法则把原式进行化简,再选取合适的a的值(使分式的分母和除式不为0)代入进行计算即可.
26、11
【解析】
先求出m+n和mn的值,再根据完全平方公式变形,代入求值即可.
【详解】
∵,
∴m+n=2,mn=1
∴=.
此题考查了二次根式的混合运算法则,完全平方公式的应用,主要考查了学生的计算能力,题目较好.
题号
一
二
三
四
五
总分
得分
答对题数
4
5
7
8
人数
3
4
2
1
汽车型号
安全性能
省油效能
外观吸引力
内部配备
A
3
1
2
3
B
3
2
2
2
2024-2025学年安徽省宿州市宿城一中学数学九上开学检测模拟试题【含答案】: 这是一份2024-2025学年安徽省宿州市宿城一中学数学九上开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年安徽省宿州第九中学数学九上开学质量检测模拟试题【含答案】: 这是一份2024-2025学年安徽省宿州第九中学数学九上开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年安徽省马鞍山市数学九年级第一学期开学监测试题【含答案】: 这是一份2024-2025学年安徽省马鞍山市数学九年级第一学期开学监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。