![新高考数学一轮复习考点精讲练+易错题型第04讲 一元二次不等式及简单不等式(原卷版)第1页](http://m.enxinlong.com/img-preview/3/3/16087402/1-1724251421340/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![新高考数学一轮复习考点精讲练+易错题型第04讲 一元二次不等式及简单不等式(原卷版)第2页](http://m.enxinlong.com/img-preview/3/3/16087402/1-1724251421365/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![新高考数学一轮复习考点精讲练+易错题型第04讲 一元二次不等式及简单不等式(原卷版)第3页](http://m.enxinlong.com/img-preview/3/3/16087402/1-1724251421392/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![新高考数学一轮复习考点精讲练+易错题型第04讲 一元二次不等式及简单不等式(解析版)第1页](http://m.enxinlong.com/img-preview/3/3/16087402/0-1724251419051/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![新高考数学一轮复习考点精讲练+易错题型第04讲 一元二次不等式及简单不等式(解析版)第2页](http://m.enxinlong.com/img-preview/3/3/16087402/0-1724251419103/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![新高考数学一轮复习考点精讲练+易错题型第04讲 一元二次不等式及简单不等式(解析版)第3页](http://m.enxinlong.com/img-preview/3/3/16087402/0-1724251419139/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:新高考数学一轮复习考点精讲练+易错题型 (2份打包,原卷版+解析版)
新高考数学一轮复习考点精讲练+易错题型第04讲 一元二次不等式及简单不等式(2份打包,原卷版+解析版)
展开这是一份新高考数学一轮复习考点精讲练+易错题型第04讲 一元二次不等式及简单不等式(2份打包,原卷版+解析版),文件包含新高考数学一轮复习考点精讲练+易错题型第04讲一元二次不等式及简单不等式原卷版doc、新高考数学一轮复习考点精讲练+易错题型第04讲一元二次不等式及简单不等式解析版doc等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
1、 一元二次不等式与相应的二次函数及一元二次方程的关系
2、由二次函数的图象与一元二次不等式的关系判断不等式恒成立问题的方法
(1).一元二次不等式ax2+bx+c>0对任意实数x恒成立⇔eq \b\lc\{\rc\ (\a\vs4\al\c1(a>0,, b2-4ac<0.))
(2)一元二次不等式ax2+bx+c<0对任意实数x恒成立⇔eq \b\lc\{\rc\ (\a\vs4\al\c1(a<0,, b2-4ac<0.))
3、.简单分式不等式
(1)eq \f(fx,gx)≥0⇔eq \b\lc\{\rc\ (\a\vs4\al\c1(fxgx≥0,,gx≠0.))
(2)eq \f(fx,gx)>0⇔f(x)g(x)>0
【考点研习一点通】
考点1 不含参的不等式
1 (1)(2020·全国Ⅰ)已知集合A={x|x2-3x-4<0},B={-4,1,3,5},则A∩B等于( )
A.{-4,1} B.{1,5} C.{3,5} D.{1,3}
(2)不等式eq \f(1-x,2+x)≥0的解集为( )
A.[-2,1] B.(-2,1]
C.(-∞,-2)∪(1,+∞) D.(-∞,-2]∪(1,+∞)
考点2 含参不等式
例2 解关于x的不等式ax2-(a+1)x+1<0(a>0).
【变式拓展】在本例中,把a>0改成a∈R,解不等式.
【变式】 (1)已知不等式ax2-bx-1>0的解集是eq \b\lc\{\rc\}(\a\vs4\al\c1(x\b\lc\|\rc\ (\a\vs4\al\c1(-\f(1,2)
例3 对于任意实数x,不等式(a-2)x2-2(a-2)x-4<0恒成立,则实数a的取值范围是( )
A.(-∞,2) B.(-∞,2]
C.(-2,2) D.(-2,2]
考点3 在给定区间上的恒成立问题
例4 已知函数f(x)=mx2-mx-1.若对于x∈[1,3],f(x)<5-m恒成立,则实数m的取值范围为________.
考点4 给定参数范围的恒成立问题
例5 若mx2-mx-1<0对于m∈[1,2]恒成立,则实数x的取值范围为________.
【变式】 (1)若不等式ax2-x+a>0对一切实数x都成立, 则实数a的取值范围为( )
A.a<-eq \f(1,2)或a>eq \f(1,2) B.a>eq \f(1,2)或a<0
C.a>eq \f(1,2) D.-eq \f(1,2)(2)当x∈(1,2)时,不等式x2+mx+4<0恒成立,则m的取值范围是( )
A.(-∞,4] B.(-∞,-5)
C.(-∞,-5] D.(-5,-4)
【拓展】
设方程ax2+bx+c=0(a≠0,Δ>0)有不相等的两根为x1,x2,且x1
表二:(两根与k的大小比较)
表三:(根在区间上的分布)
根在区间上的分布还有一种情况:两根分别在区间(m,n)外,即在区间两侧x1
(1)a>0时,eq \b\lc\{\rc\ (\a\vs4\al\c1(fm<0,,fn<0;))
(2)a<0时,eq \b\lc\{\rc\ (\a\vs4\al\c1(fm>0,,fn>0.))
对以上的根的分布表中,两根有且仅有一根在(m,n)内有以下特殊情况:
(ⅰ)若f(m)=0或f(n)=0,则此时f(m)·f(n)<0不成立,但对于这种情况是知道了方程有一根为m或n,可以求出另外一根,然后可以根据另一根在区间(m,n)内,从而可以求出参数的值.如方程mx2-(m+2)x+2=0在区间(1,3)上有一根,因为f(1)=0,所以mx2-(m+2)x+2=(x-1)(mx-2),另一根为eq \f(2,m),由1
例2 已知方程2x2-(m+1)x+m=0有两个不等正实根,求实数m的取值范围.
例3 已知二次函数f(x)=(m+2)x2-(2m+4)x+3m+3与x轴有两个交点,一个大于1,一个小于1,求实数m的取值范围.
【考点易错】
易错01 一元二次不等式及简单不等式的解法
例1、求下列不等式的解集:
(1)-x2+8x-3>0;(2) ≤0
【变式】1、解下列不等式:(1)-3x2-2x+8≥0;
(2)0<x2-x-2≤4.
【变式】2、(1)解不等式 SKIPIF 1 < 0 SKIPIF 1 < 0
(2)已知函数 SKIPIF 1 < 0 SKIPIF 1 < 0 则不等式 SKIPIF 1 < 0 的解集为________.
【变式】3、若关于 SKIPIF 1 < 0 的不等式 SKIPIF 1 < 0 的解集为 SKIPIF 1 < 0 ,则关于x的不等式 SKIPIF 1 < 0 的解集为________.
易错02 含参不等式的讨论
例1、(1)解关于实数 SKIPIF 1 < 0 的不等式: SKIPIF 1 < 0 .
(2)解关于实数 SKIPIF 1 < 0 的不等式: SKIPIF 1 < 0 .
【变式】1、求不等式12x2-ax>a2(a∈R)的解集
【变式】2、解关于x的不等式ax2-2≥2x-ax(a∈R)。
易错03 恒成立问题
例3、设函数 SKIPIF 1 < 0 .
(1)若对于一切实数 SKIPIF 1 < 0 , SKIPIF 1 < 0 恒成立,求实数 SKIPIF 1 < 0 的取值范围;
(2)若对于 SKIPIF 1 < 0 , SKIPIF 1 < 0 恒成立,求实数 SKIPIF 1 < 0 的取值范围.
【变式】1、若不等式(a-2)x2+2(a-2)x-4<0对一切x∈R恒成立,则实数a的取值范围是( )
A.(-∞,2] B.[-2,2]
C.(-2,2] D.(-∞,-2)
【变式】2、已知函数 SKIPIF 1 < 0 ,若对任意 SKIPIF 1 < 0 恒成立,则实数a的取值范围是________.
【巩固提升】
1、 (2020·北京市海淀区期末)不等式x2+2x-3<0的解集为( )
A.{x|x<-3或x>1} B.{x|x<-1或x>3}
C.{x|-1
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
3、(2020·黄冈调研)关于x的不等式ax+b>0的解集是(1,+∞),则关于x的不等式(ax+b)(x-2)<0的解集是( )
A.(-∞,1)∪(2,+∞) B.(-1,2)
C.(1,2) D.(-∞,-1)∪(2,+∞)
4、“不等式x2-x+m>0在R上恒成立”的充要条件是( )
A.m>eq \f(1,4) B.m
5、下列四个解不等式,正确的有( )
A.不等式2x2-x-1>0的解集是{x|x>2或x<1}
B.不等式-6x2-x+2≤0的解集是eq \b\lc\{\rc\}(x\b\lc\|\rc\ (x≤-\f(2,3)或x≥\f(1,2)))
C.若不等式ax2+8ax+21<0的解集是{x|-7
6.已知不等式ax2-bx-1≥0的解集是eq \b\lc\[\rc\](\a\vs4\al\c1(-\f(1,2),-\f(1,3))),则不等式x2-bx-a<0的解集是( )
A.(2,3) B.(-∞,2)∪(3,+∞)
C.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3),\f(1,2))) D.eq \b\lc\(\rc\)(\a\vs4\al\c1(-∞,\f(1,3)))∪eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),+∞))
7.已知函数f(x)=-x2+ax+b2-b+1(a∈R,b∈R),对任意实数x都有f(1-x)=f(1+x)成立,当x∈[-1,1]时,f(x)>0恒成立,则b的取值范围是( )
A.-12
C.b<-1或b>2 D.不能确定
8.若不等式-2≤x2-2ax+a≤-1有唯一解,则a的值为________.
9.设f(x)是定义在R上的以3为周期的奇函数,若f(1)>1,f(2)=eq \f(2a-3,a+1),则实数a的取值范围是________.
*10.已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是______________________.
11.设二次函数f(x)=ax2+bx+c,函数F(x)=f(x)-x的两个零点为m,n(m
(2)若a>0,且0
13、解关于x的不等式 SKIPIF 1 < 0
14.已知f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,5).
(1)若不等式组eq \b\lc\{\rc\ (\a\vs4\al\c1(fx>0,,fx+k<0))的正整数解只有一个,求实数k的取值范围;
(2)若对于任意x∈[-1,1],不等式t·f(x)≤2恒成立,求t的取值范围.
判别式Δ=b2-4ac
Δ>0
Δ=0
Δ<0
二次函数y=ax2+bx+c(a>0)的图象
一元二次方程
ax2+bx+c=0
(a>0)的根
有两相异实数根x1,x2(x1<x2)
有两相等实数根x1=x2=-eq \f(b,2a)
没有实数根
一元二次不等式
ax2+bx+c>0
(a>0)的解集
{x|x<x1或x>x2}
eq \b\lc\{\rc\}(\a\vs4\al\c1(x\b\lc\|\rc\ (\a\vs4\al\c1(,,,,,))x≠-\f(b,2a)))
R
一元二次不等式
ax2+bx+c<0
(a>0)的解集
{x|x1<x<x2}
∅
∅
分布情况
两个负根即两根都小于0(x1<0,x2<0)
两个正根即两根都大于0(x1>0,x2>0)
一正根一负根即一个根小于0,一个根大于0(x1<0
得出的结论
eq \b\lc\{\rc\ (\a\vs4\al\c1(Δ>0,,-\f(b,2a)<0,,f0>0))
eq \b\lc\{\rc\ (\a\vs4\al\c1(Δ>0,,-\f(b,2a)>0,,f0>0))
f(0)<0
大致图象(a<0)
得出的结论
eq \b\lc\{\rc\ (\a\vs4\al\c1(Δ>0,,-\f(b,2a)<0,,f0<0))
eq \b\lc\{\rc\ (\a\vs4\al\c1(Δ>0,,-\f(b,2a)>0,,f0<0))
f(0)>0
综合结论
(不讨论a)
eq \b\lc\{\rc\ (\a\vs4\al\c1(Δ>0,,-\f(b,2a)<0,,a·f0>0))
eq \b\lc\{\rc\ (\a\vs4\al\c1(Δ>0,,-\f(b,2a)>0,,a·f0>0))
a·f(0)<0
分布情况
两根都小于k即x1
一个根小于k,一个根大于k即x1
得出的结论
eq \b\lc\{\rc\ (\a\vs4\al\c1(Δ>0,,-\f(b,2a)
eq \b\lc\{\rc\ (\a\vs4\al\c1(Δ>0,,-\f(b,2a)>k,,fk>0))
f(k)<0
大致图象(a<0)
得出的结论
eq \b\lc\{\rc\ (\a\vs4\al\c1(Δ>0,,-\f(b,2a)
f(k)>0
综合结论
(不讨论a)
eq \b\lc\{\rc\ (\a\vs4\al\c1(Δ>0,,-\f(b,2a)
eq \b\lc\{\rc\ (\a\vs4\al\c1(Δ>0,,-\f(b,2a)>k,,a·fk>0))
a·f(k)<0
分布情况
两根都在(m,n)内
两根有且仅有一根在(m,n)内(图象有两种情况,只画了一种)
一根在(m,n)内,另一根在(p,q)内,m
大致图象(a>0)
得出的结论
eq \b\lc\{\rc\ (\a\vs4\al\c1(Δ>0,,fm>0,,fn>0,,m<-\f(b,2a)f(m)·f(n) <0
eq \b\lc\{\rc\ (\a\vs4\al\c1(fm>0,,fn<0,,fp<0,,fq>0))或
eq \b\lc\{\rc\ (\a\vs4\al\c1(fmfn<0,,fpfq<0))
大致图象(a<0)
得出的结论
eq \b\lc\{\rc\ (\a\vs4\al\c1(Δ>0,,fm<0,,fn<0,,m<-\f(b,2a)f(m)·f(n) <0
eq \b\lc\{\rc\ (\a\vs4\al\c1(fm<0,,fn>0,,fp>0,,fq<0))或
eq \b\lc\{\rc\ (\a\vs4\al\c1(fmfn<0,,fpfq<0))
综合结论
(不讨论a)
eq \b\lc\{\rc\ (\a\vs4\al\c1(Δ>0,,fm·fn>0,,m<-\f(b,2a)f(m)·f(n) <0
eq \b\lc\{\rc\ (\a\vs4\al\c1(fmfn<0,,fpfq<0))
相关试卷
这是一份新高考数学一轮复习考点精讲练+易错题型第36讲 数列的综合运用(2份打包,原卷版+解析版),文件包含新高考数学一轮复习考点精讲练+易错题型第36讲数列的综合运用原卷版doc、新高考数学一轮复习考点精讲练+易错题型第36讲数列的综合运用解析版doc等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
这是一份新高考数学一轮复习考点精讲练+易错题型第35讲 数列的求和(2份打包,原卷版+解析版),文件包含新高考数学一轮复习考点精讲练+易错题型第35讲数列的求和原卷版doc、新高考数学一轮复习考点精讲练+易错题型第35讲数列的求和解析版doc等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
这是一份新高考数学一轮复习考点精讲练+易错题型第32讲 复数(2份打包,原卷版+解析版),文件包含新高考数学一轮复习考点精讲练+易错题型第32讲复数原卷版doc、新高考数学一轮复习考点精讲练+易错题型第32讲复数解析版doc等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。