人教版八年级上册15.3 分式方程同步训练题
展开1、了解分式方程的概念和检验根的意义;
2、会解可转化为一元一次方程的分式方程;掌握这种方程解法,掌握解方程中的化归思想;
3、会列出分式方程解简单的应用题。
知识精讲
知识点01 分式方程及解分式方程
知识点
1.分母中含有未知数的方程叫做分式方程.
注意:“分母中含有未知数”是分式方程与整式方程的根本区别,也是判定一个方程为分式方程的依据.
2.分式方程的解法
(1)解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘以各分式的最简公分母.
(2)解分式方程的步骤:①找最简公分母,当分母是多项式时,先分解因式;②去分母,方程两边都乘最简公分母,约去分母,化为整式方程;③解整式方程;④验根.
注意:解分式方程过程中,易错点有:①去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项;②忘记验根,最后的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解.
3.增根
在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.由于可能产生增根,所以解分式方程要验根,其方法是将根代入最简公分母中,使最简公分母为零的根是增根,否则是原方程的根.
注意:增根虽然不是方程的根,但它是分式方程去分母后变形而成的整式方程的根.若这个整式方程本身无解,当然原分式方程就一定无解.
【知识拓展1】分式方程的定义
例1.(2022·山东省泰安八年级阶段练习)关于x的方程①;②;③;④.其中是分式方程是( )
A.①②③B.①②C.①③D.①②④
【即学即练】
1.(2022·湖南·八年级单元测试)已知方程:
①; ② ③; ④.
这四个方程中,分式方程的个数是( )
A.4B.3C.2D.1
【知识拓展2】解分式方程
例2.(2022·河北·石家庄三模)小明和小亮在解答“解分式方程:”的过程如框,对他们的解答过程(每一步只对上一步负责)有以下判断,判断错误的是( )
小明的解法:
解:去分母得:①
去括号得:②
移项得:③
合并同类项得:④
系数化为得:⑤
是原分式方程的解⑥
小亮的解法:
解:去分母得:①
去括号得:②
移项得:③
合并同类项得:④
系数化为得:⑤
A.小明的步骤①错误,漏乘B.小明的步骤②、③、④都正确
C.小明的步骤⑤错误D.小亮的解答完全正确
【即学即练】
2.(2022·河北·八年级阶段练习)解方程:
(1) (2)
【知识拓展3】分式方程的增根与无解问题
例3.(2022·浙江东阳·七年级期末)关于x的分式方程:.
(1)当m=3时,求此时方程的根;(2)若这个关于x的分式方程会产生增根,试求m的值.
【即学即练】
3(1)(2022·江苏九年级专题练习)关于x的分式方程(其中a为常数)有增根,则增根为_____.
(2)(2022·浙江杭州·初二月考)已知关于x的分式方程﹣1=无解,则m的值是( )
A.﹣2或﹣3B.0或3C.﹣3或3D.﹣3或0
【知识拓展4】分式方程的特殊解问题
例4.(2022·河南八年级期末)如果关于x的方程的解为非负数,且关于x,y的二元一次方程组解满足,则满足条件的整数a有( )个.
A.7B.6C.5D.4
【即学即练】
4.(1)(2022·安徽东至·七年级期末)已知关于的方程的解为正数,则的取值范围为____.
(2)(2022·江苏苏州·八年级期中)已知关于x的分式方程的解是负数,则a的取值范围______.
知识点02 分式方程的应用
知识点
分式方程的应用
(1)分式方程的应用主要涉及工程问题,有工作量问题、行程问题等.
每个问题中涉及到三个量的关系,如:工作时间=,时间=等.
(2)列分式方程解应用题的一般步骤:①设未知数;②找等量关系;③列分式方程;④解分式方程;⑤检验(一验分式方程,二验实际问题);⑥答.
【知识拓展1】工程问题
例1.(2022·内蒙古凉城·期末)为了支援青海省玉树地区人民抗震救灾,四川省某休闲用品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划用10天完成.(1)按此计划,该公司平均每天应生产帐篷 顶;(2)生产2天后,公司又从其他部门抽调了50名工人参加帐篷生产,同时通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产帐篷?
【即学即练1】
1.(2022·山东临沂市·中考真题)某工厂生产、两种型号的扫地机器人.型机器人比型机器人每小时的清扫面积多50%;清扫所用的时间型机器人比型机器人多用40分钟. 两种型号扫地机器人每小时分别清扫多少面积?若设型扫地机器人每小时清扫,根据题意可列方程为( )
A. B. C. D.
【知识拓展2】行程问题
例2.(2022·山东·武城县八年级期末)小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会前赶到奥体中心?说明理由.
【即学即练2】
2.(2022·竹溪县实验中学其他)某中学八年级学生去距学校10千米的景点参观,一部分学生骑自行车先走,过了30分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为千米/小时,则所列方程正确的是( )
A.B.C.D.
【知识拓展3】销售问题
例3.(2022·重庆巴蜀中学初三期中)某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.
(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?
(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?
【即学即练】
3.(2020·四川广元·八年级期末)倡导健康生活推进全民健身,某社区去年购进,两种健身器材若干件,经了解,种健身器材的单价是种健身器材单价的1.5倍,用7200元购买种健身器材比用5400元购买种健身器材多10件.(1),两种健身器材的单价分别是多少元?(2)若今年种健身器材的单价相较去年上涨了,种健身器材的单价相较去年下降了,这样用7200元购买种健身器材和用5400元购买种健身器材的数量就一样多,求的值.(保留一位小数)
【知识拓展4】方案问题
例4.(2022·内蒙古乌海·初二期末)在“双十二”期间,两个超市开展促销活动,活动方式如下:
超市:购物金额打9折后,若超过2000元再优惠300元; 超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:(1)若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;(2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)
【即学即练】
4.(2022·湖南长沙·八年级期末)某电脑公司经销甲种型号电脑,受市场影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价500元,如果卖出相同数量的电脑,去年销售额为90000元,今年销售额只有80000元.(1)今年三月份甲种电脑每台售价多少元?(2)为了提高收入,电脑公司决定增加经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于66000元且不少于64000元的资金购进这两种电脑共20台,问有几种进货方案?(3)如果乙种电脑每台售价为3700元,为扩大乙种电脑的销量,公司决定每售出一台乙种电脑,返还顾客现金元,要使(2)中所有方案获利相同,值应是多少?
能力拓展
考法01 分式方程中的整数解问题
【典例1】(2022·达州市·中考真题)若分式方程的解为整数,则整数___________.
变式1.(2022·河南南阳·八年级阶段练习)若实数使得关于的分式方程有正整数解,则所有满足条件的的值之和是( )
A.20B.17C.15D.12
变式2.(2022·重庆实验外国语学校)关于x的分式方程有整数解,且关于y的不等式组有解,则所有满足条件的正整数a的和是( )
A.6B.12C.14D.20
分层提分
题组A 基础过关练
1.(2022·山东枣庄·八年级阶段练习)下列方程①,②,③,④中,是关于x的分式方程的有( )个.
A.1B.2C.3D.4
2.(2022·湖南·八年级阶段练习)把分式方程的两边同时乘以,约去分母,得( )
A. B. C. D.
3.(2022·山东青州·初二期末)已知关于的分式方程无解,则的值为( )
A.B.或C.D.或或
4.(2022·广东·佛山市华英学校三模),两地相距千米,一辆大汽车从地开出小时后,又从地开出另一辆小汽车,已知小汽车的速度是大汽车速度的倍,结果小汽车比大汽车早分钟到达地,求两种汽车每小时各走多少千米.设大汽车的速度为,则下面所列方程正确的是( )
A. B. C. D.
5.(2022·陕西金台·)某公司为尽快给医院供应一批医用防护服,原计划x天生产1200防护服,由于采用新技术,每天增加生产30套,因此提前2天完成任务,列出方程为( )
A. B. C. D.
6.(2022·湖南·岳阳县甘田中学八年级阶段练习)方程的解昰___________.
7.(2022·湖南·永州市八年级阶段练习)如果方程的解是正数,那么的取值范围为______.
8.(2022·江苏海陵·八年级期中)若解关于x的方程=+2时产生了增根,则m=_____.
9.(2022·湖南·岳阳县甘田中学八年级阶段练习)解方程:
(1) (2)
10.(2022·重庆一中九年级阶段练习)某山区突发森林大火,在这场与山火的拉锯战中,“以火灭火”的方式助力了阶段性胜利时刻的到来.浴火后的山区,一半青山一半黄,为了还山区一抹绿,志愿者协会组织开展“迎国庆植树活动”,计划种植黄桷树和香樟这两种树.
(1)该协会计划种植黄桷树和香樟共5000棵,其中黄桷树的数量比香樟的数量的2倍少1000棵,求计划种植黄桷树多少棵?
(2)在实际种植过程中,为了加快进度,将参与活动的志愿者分成甲、乙两组,甲组负责种植香樟,乙组负责种植黄桷树,其中乙组每小时种植的树苗比甲组多50棵,最终两个小组同时完成任务,求乙组每小时种植的数量.
题组B 能力提升练
1.(2022·四川广元·八年级期末)方程的解为( )
A.B.C.D.原分式方程无解
2.(2022·绵阳市·八年级专题练习)将的分母化为整数,得( )
A.B.
C.D.
3.(2022·浙江·模拟预测)已知关于x的方程无解,则m的值为( )
A.4B.3C.2D.1
4.(2022·石家庄市八年级期末)关于的分式方程有解,则字母的取值范围是( )
A.或B.C.D.且
5.(2022·广东·高州八年级阶段练习)已知关于的分式方程的解为负数,求m的取值范围.
6.(2022·河北张家口·初三二模)甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为( )A.= B.= C.= D.=
7.(2022·山东枣庄二模)若整数a使关于x的分式方程﹣2=有整数解,则符合条件的所有a之和为( )
A.7B.11C.12D.13
8.(2022·江苏·滨海县八巨初级中学八年级阶段练习)某中学组织学生去离学校的东山农场,先遣队与大队同时出发,先遣队的速度是大队的速度的1.2倍,若先遣队比大队早到了,设大队的速度为,可得方程为_____________.
9.(2022·江苏新吴·八年级期末)某文具店王老板用240元购进一批笔记本,很快售完;王老板又用600元购进第二批笔记本,所购本数是第一批的2倍,但进价比第一批每本多了2元.(1)第一批笔记本每本进价多少元?(2)王老板以每本12元的价格销售第二批笔记本,售出60%后,为了尽快售完,决定打折促销,要使第二批笔记本的销售总利润不少于48元,剩余的笔记本每本售价最低打几折?
10.(2022·山东德州·八年级期末)某商店准备购进A、B两种商品,A种商品每件的进价比B种商品每件的进价多20元,用2000元购进A种商品和用1200元购进B种商品的数量相同.商店将A种商品每件的售价定为80元,B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?
(2)商店计划用不超过1560元的资金购进A、B两种商品共40件,其中A种商品的数量不低于B种商品数量的一半,该商店有几种进货方案?
11.(2021·浙江长兴·初二月考)某市文化宫学习十九大有关优先发展教育的精神,举办了为某贫困山区小学捐赠书包活动.首次用2000元在商店购进一批学生书包,活动进行后发现书包数量不够,又购进第二批同样的书包,所购数量是第一批数量的3倍,但单价贵了4元,结果第二批用了6300元.
(1)求文化官第一批购进书包的单价是多少?
(2)商店两批书包每个的进价分别是68元和70元,这两批书包全部售给文化宫后,商店共盈利多少元?
题组C 培优拔尖练
1.(2020·黑龙江鹤岗市·中考真题)已知关于的分式方程的解为非正数,则的取值范围是( )
A.B.C.D.
2.(2022·安徽霍邱·七年级期末)已知关于x的分式方程的解满足2<x<5,则k的取值范围是( )
A.﹣7<k<14B.﹣7<k<14且k≠0C.﹣14<k<7且k≠0D.﹣14<k<7
3.(2022·重庆市育才中学九年级阶段练习)若关于x的一元一次不等式组无解,且关于y的分式方程的解是整数,则所有满足条件的整数a的值之和为( )
A.6B.4C.2D.1
4.(2022·重庆一中九年级阶段练习)“遥知涟水蟹,九月已经霜,巨实黄金重,舒肥白玉香”,金秋时节,是吃螃蟹的最佳季节.某螃蟹经销商出售梭子蟹、青蟹、大闸蟹三种产品.10月1日,梭子蟹、青蟹的销量之比为,青蟹、大闸蟹的销量之比为,梭子蟹、青蟹的单价之比为,大闸蟹的单价比青餐高.10月8日,随着假期结束,梭子蟹、青蟹的购买热度与10月1日相比有所下降,单价也有所变化,梭子蟹下降的销量占当天三种螃蟹总销量的,梭子蟹、青蟹的销量之比为.10月8日,大闸蟹因为单价降低50%,销量反而有所增长,结果发现,10月8日大闸蟹的销售额恰好等于10月1日大闸蟹的销售额,梭子蟹和青蟹在10月8日的总销售额之比为,梭子蟹两天的总销售额与青蟹两天的总销售额之比为,则10月8日,梭子蟹与大闸蟹的单价之比为___________.
5.(2022·厦门双十中学海沧附属学校)观察分析下列方程:①;②;③.请利用它们所蕴含的规律,求关于的方程(n为正整数)的根,你的答案是_____.
6.(2022·河北·邢台市八年级阶段练习)已知,关于的分式方程.
(1)当,时,求分式方程的解;(2)当时,求为何值时分式方程无解;
(3)若,且、为正整数,当分式方程的解为整数时,求的值.
7.(2022·重庆·黔江区育才初级中学校八年级期中)已知关于x的分式方程
(1)已知m=4,求方程的解;(2)若该分式方程无解,试求m的值.
8.(2022·河南·初二期中)某市组织学术研讨会,需租用客车接送参会人员往返宾馆和观摩地点,客车租赁公司现有座和座两种型号的客车可供租用,已知60座的客车每辆每天的租金比座的贵元.(1)会务组第一天在这家公司租了辆座和辆座的客车,一天的租金为元,求座和座的客车每辆每天的租金各是多少元?(2)由于第二天参会人员发生了变化,因此会务组需重新确定租车方案,方案:若只租用座的客车,会有一辆客车空出个座位;方案:若只租用座客车,正好坐满且比只租用座的客车少用两辆。①请计算方案的费用; ②如果你是会务组负责人,从经济角度考虑,还有其他方案吗?
9.(2022·湖南学八年级阶段练习)某地为某校师生交通方便,在通往该学校原道路的一段全长为360m的旧路上进行整修铺设柏油路面.铺设120m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用32天完成这一任务.(1)求原计划每天铺设路面的长度;(2)若市政部门原来每天支付工人工资为600元,提高工效后每天支付给工人的工资增长了30%,现市政部门为完成整个工程准备了25000元的流动资金.请问,所准备的流动资金是否够支付工人工资?并说明理由.
人教版八年级数学上册同步精品讲义专题15.3分式方程(学生版+解析): 这是一份人教版八年级数学上册同步精品讲义专题15.3分式方程(学生版+解析),共45页。试卷主要包含了会列出分式方程解简单的应用题,16等内容,欢迎下载使用。
初中数学人教版八年级上册15.3 分式方程优秀课后作业题: 这是一份初中数学人教版八年级上册15.3 分式方程优秀课后作业题,文件包含提高练153分式方程原卷版docx、基础练153分式方程原卷版docx、知识点153分式方程原卷版docx、提高练153分式方程解析版docx、基础练153分式方程解析版docx、知识点153分式方程解析版docx等6份试卷配套教学资源,其中试卷共66页, 欢迎下载使用。
初中数学人教版八年级上册15.3 分式方程优秀课后练习题: 这是一份初中数学人教版八年级上册15.3 分式方程优秀课后练习题,文件包含同步讲义人教版数学八年级上册专题153分式方程学生版docx、同步讲义人教版数学八年级上册专题153分式方程教师版docx等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。