搜索
    上传资料 赚现金
    人教B版高中数学必修第二册5.3.2事件之间的关系与运算【上课课件】
    立即下载
    加入资料篮
    人教B版高中数学必修第二册5.3.2事件之间的关系与运算【上课课件】01
    人教B版高中数学必修第二册5.3.2事件之间的关系与运算【上课课件】02
    人教B版高中数学必修第二册5.3.2事件之间的关系与运算【上课课件】03
    人教B版高中数学必修第二册5.3.2事件之间的关系与运算【上课课件】04
    人教B版高中数学必修第二册5.3.2事件之间的关系与运算【上课课件】05
    人教B版高中数学必修第二册5.3.2事件之间的关系与运算【上课课件】06
    人教B版高中数学必修第二册5.3.2事件之间的关系与运算【上课课件】07
    人教B版高中数学必修第二册5.3.2事件之间的关系与运算【上课课件】08
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教B版 (2019)必修 第二册5.3.2 事件之间的关系与运算教学课件ppt

    展开
    这是一份人教B版 (2019)必修 第二册5.3.2 事件之间的关系与运算教学课件ppt,共34页。PPT课件主要包含了新知初探·自主学习,课堂探究·素养提升,一定发生,B⊇A,A⊆B,不可能事件,A∩B=∅,必然事件,A∪B,A+B等内容,欢迎下载使用。

    【课程标准】了解随机事件的并、交与互斥的含义,能结合实例进行随机事件的并、交运算.
    教 材 要 点知识点一 事件的关系与运算
    事件A与事件B中至少有一个发生
    事件A发生且事件B发生
    状元随笔 互斥事件与对立事件的区别与联系两个事件A与B是互斥事件,有如下三种情况:(1)若事件A发生,则事件B就不发生;(2)若事件B发生,则事件A就不发生;(3)事件A、B都不发生.两个事件A、B是对立事件,仅有前两种情况.因此,互斥未必对立,但对立一定互斥.
    基 础 自 测1.对同一事件来说,若事件A是必然事件,事件B是不可能事件,则事件A与事件B的关系是(  )A.互斥不对立    B.对立不互斥C.互斥且对立 D.不互斥、不对立
    解析:必然事件与不可能事件不可能同时发生,但必有一个发生,故事件A与事件B的关系是互斥且对立.
    2.抽查10件产品,记事件A为“至少有2件次品”,则A的对立事件为(  )A.至多有2件次品 B.至多有1件次品C.至多有2件正品 D.至少有2件正品
    解析:至少有2件次品包含2,3,4,5,6,7,8,9,10件次品,共9种结果,故它的对立事件为含有1或0件次品,即至多有1件次品.
    3.某人打靶两次,事件A为只有一次中靶,事件B为两次都中靶,则A+B为_____________.
    解析:A+B为并事件即至少有一次中靶.
    4.一批产品共有100件,其中5件是次品,95件是合格品.从这批产品中任意抽取5件,现给出以下四个事件:事件A:恰有一件次品;事件B:至少有两件次品;事件C:至少有一件次品;事件D:至多有一件次品.并给出以下结论:①A∪B=C;②B∪D是必然事件;③A∩B=C;④A∩D=C.其中正确结论的序号是(  )A.①②  B.③④ C.①③  D.②③
    解析:事件A∪B:至少有一件次品,即事件C,所以①正确;事件A∩B=∅,③不正确;事件B∪D:至少有两件次品或至多有一件次品,包括了所有情况,所以②正确;事件A∩D:恰有一件次品,即事件A,所以④不正确.
    题型1 事件的关系判断[经典例题]例1 在掷骰子的试验中,可以定义许多事件.例如,事件C1={出现1点},事件C2={出现2点},事件C3={出现3点},事件C4={出现4点},事件C5={出现5点},事件C6={出现6点},事件D1={出现的点数不大于1},事件D2={出现的点数大于3},事件D3={出现的点数小于5},事件E={出现的点数小于7},事件F={出现的点数为偶数},事件G={出现的点数为奇数},请根据上述定义的事件,回答下列问题:(1)请举出符合包含关系、相等关系的事件;(2)利用和事件的定义,判断上述哪些事件是和事件.
    【解析】 (1)若事件C1,C2,C3,C4发生,则事件D3必发生,所以C1⊆D3,C2⊆D3,C3⊆D3,C4⊆D3.同理可得,事件D2包含事件C4,C5,C6;事件E包含事件C1,C2,C3,C4,C5,C6;事件F包含事件C2,C4,C6;事件G包含事件C1,C3,C5.易知事件C1与事件D1相等,即C1=D1.(2)因为事件D2={出现的点数大于3}={出现4点或出现5点或出现6点},所以D2=C4∪C5∪C6 (或D2=C4+C5+C6).同理可得,D3=C1+C2+C3+C4,E=C1+C2+C3+C4+C5+C6,F=C2+C4+C6,G=C1+C3+C5.故事件D2,D3,E,F,G为和事件.
    方法归纳(1)包含关系、相等关系的判定①事件的包含关系与集合的包含关系相似;②两事件相等的实质为相同事件,即同时发生或同时不发生.(2)事件间运算方法①利用事件间运算的定义.列出同一条件下的试验所有可能出现的结果,分析并利用这些结果进行事件间的运算;②利用Venn图,借助集合间运算的思想,分析同一条件下的试验所有可能出现的结果,把这些结果在图中列出,进行运算.
    跟踪训练1 盒子里有6个红球,4个白球,现从中任取3个球,设事件A={3个球中有1个红球,2个白球},事件B={3个球中有2个红球,1个白球},事件C={3个球中至少有1个红球},事件D={3个球中既有红球又有白球}.则:(1)事件D与事件A,B是什么样的运算关系?(2)事件C与事件A的积事件是什么事件?
    解析:(1)对于事件D,可能的结果为1个红球2个白球或2个红球1个白球,故D=A+B.(2)对于事件C,可能的结果为1个红球2个白球,2个红球1个白球或3个红球,故CA=A.
    题型2 互斥事件与对立事件的判断(数学抽象)例2 某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对立事件:(1)“恰有1名男生”与“恰有2名男生”;(2)“至少有1名男生”与“全是男生”;(3)“至少有1名男生”与“全是女生”;(4)“至少有1名男生”与“至少有1名女生”.
    判断的依据是互斥事件、对立事件的定义.
    【解析】 从3名男生和2名女生中任选2人有如下三种结果:2名男生,2名女生,1男1女.(1)“恰有1名男生”指1男1女,与“恰有2名男生”不能同时发生,它们是互斥事件;但是当选取的结果是2名女生时,该两事件都不发生,所以它们不是对立事件.(2)“至少有1名男生”包括2名男生和1男1女两种结果,与事件“全是男生”可能同时发生,所以它们不是互斥事件.(3)“至少有1名男生”与“全是女生”不可能同时发生,所以它们互斥,由于它们必有一个发生,所以它们是对立事件.(4)“至少有1名女生”包括1男1女与2名女生两种结果,当选出的是1男1女时,“至少有1名男生”与“至少有1名女生”同时发生,所以它们不是互斥事件.
    方法归纳要判断两个事件是不是互斥事件,只需要找出各个事件包含的所有结果,看它们之间能不能同时发生,在互斥的前提下,看两个事件中是否必有一个发生,可判断是否为对立事件.注意辨析“至少”“至多”等关键词语的含义,知道它们对事件结果的影响.必要时可以把具体的事件列举出来,更易于分辨.
    跟踪训练2 从一批产品中取出三件产品,设A表示“三件产品全不是次品”,B表示“三件产品全是次品”,C表示“三件产品至少有一件是次品”,则下列结论正确的是(  )A.A与C互斥B.任何两个均互斥C.B与C互斥D.任何两个均不互斥
    先弄清每个事件的情况,再判断两者之间的关系.
    解析:由题意可知,事件A与事件C不可能同时发生,故A与C互斥,选A.
    题型3 事件的运算[经典例题]例3 如图是某班级50名学生订阅数学、语文、英语学习资料的情况,其中A表示订阅数学学习资料的学生,B表示订阅语文学习资料的学生,C表示订阅英语学习资料的学生.(1)从这个班任意选择一名学生,用自然语言描述1,4,5,8各区域所代表的事件;(2)用A,B,C表示下列事件:①恰好订阅一种学习资料;②没有订阅任何学习资料.
    状元随笔 (1)由图可得出1,4,5,8各区域所代表的事件;(2)由事件的关系与运算求解即可.
    跟踪训练3 生产某种产品需要2道工序,设事件A=“第一道工序加工合格”,事件B=“第二道工序加工合格”,用A,B表示下列事件:C=“产品合格”,D=“产品不合格”.
    题型4 概率公式的应用[数学抽象、数学运算]例4 在数学考试中,小明的成绩在90分(含90分)以上的概率是0.18,在80分~89分(包括89分,下同)的概率是0.51,在70分~79分的概率是0.15,在60分~69分的概率是0.09,在60分以下的概率是0.07,计算:(1)小明在数学考试中取得80分以上的成绩的概率;(2)小明数学考试及格的概率.
    状元随笔 小明的成绩在80分以上可以看作是互斥事件“80分~89分”“90分以上”的并事件,小明数学考试及格可看作是“60分~69分”“70分~79分”“80分~89分”“90分以上”这几个彼此互斥事件的并事件,又可看作是“不及格”这一事件的对立事件.
    方法归纳互斥事件、对立事件概率的求解方法(1)互斥事件的概率的加法公式P(A+B)=P(A)+P(B).(2)对于一个较复杂的事件,一般将其分解成几个简单的事件,当这些事件彼此互斥时,原事件的概率就是这些简单事件的概率的和.(3)当求解的问题中有“至多”“至少”“最少”等关键词语时,常常考虑其反面,通过求其反面,转化为所求问题.
    跟踪训练4 从甲地到乙地沿某条公路行驶一共200公里,遇到红灯个数的概率如表所示:(1)求表中字母a的值;(2)求至少遇到4个红灯的概率;(3)求至多遇到5个红灯的概率.
    方法归纳事件间的运算方法(1)利用事件间运算的定义,列出同一条件下的试验所有可能出现的结果,分析并利用这些结果进行事件间的运算.(2)利用Venn图,借助集合间运算的思想,分析同一条件下的试验所有可能出现的结果,把这些结果在图中列出,进行运算.
    相关课件

    高中数学人教B版 (2019)必修 第二册5.3.2 事件之间的关系与运算评课课件ppt: 这是一份高中数学人教B版 (2019)必修 第二册<a href="/sx/tb_c4000157_t3/?tag_id=26" target="_blank">5.3.2 事件之间的关系与运算评课课件ppt</a>,共40页。PPT课件主要包含了分钟对点练,分钟综合练,答案2次都中靶等内容,欢迎下载使用。

    数学5.3.2 事件之间的关系与运算优质课ppt课件: 这是一份数学<a href="/sx/tb_c4000157_t3/?tag_id=26" target="_blank">5.3.2 事件之间的关系与运算优质课ppt课件</a>,文件包含人教B版数学必修第二册532《事件之间的关系与运算》教学课件pptx、人教B版数学必修第二册532《事件之间的关系与运算》分层练习原卷版docx、人教B版数学必修第二册532《事件之间的关系与运算》分层练习解析版docx等3份课件配套教学资源,其中PPT共24页, 欢迎下载使用。

    高中数学人教B版 (2019)必修 第二册5.3.2 事件之间的关系与运算教学ppt课件: 这是一份高中数学人教B版 (2019)必修 第二册<a href="/sx/tb_c4000157_t3/?tag_id=26" target="_blank">5.3.2 事件之间的关系与运算教学ppt课件</a>,共37页。PPT课件主要包含了整体概览,新知探究,Φ与任意事件互斥,ABC,归纳小结,作业布置,目标检测,全部击中,至少击中1发,至少击中2发等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map