适用于新教材提优版2024届高考数学一轮复习学案第八章直线和圆圆锥曲线8.12圆锥曲线中定点与定值问题新人教A版
展开
这是一份适用于新教材提优版2024届高考数学一轮复习学案第八章直线和圆圆锥曲线8.12圆锥曲线中定点与定值问题新人教A版,共2页。
例1 (2022·全国乙卷)已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过A(0,-2),Beq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2),-1))两点.
(1)求E的方程;
(2)设过点P(1,-2)的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足eq \(MT,\s\up6(→))=eq \(TH,\s\up6(→)).证明:直线HN过定点.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
思维升华 求解直线或曲线过定点问题的基本思路
(1)把直线或曲线方程中的变量x,y当作常数看待,把方程一端化为零,既然是过定点,那么这个方程就要对任意参数都成立,这时参数的系数就要全部等于零,这样就得到一个关于x,y的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点.
(2)由直线方程确定其过定点时,若得到了直线方程的点斜式y-y0=k(x-x0),则直线必过定点(x0,y0);若得到了直线方程的斜截式y=kx+m,则直线必过定点(0,m).
跟踪训练1 (2023·郑州质检)已知椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的上顶点和两焦点构成的三角形为等腰直角三角形,且面积为2,点M为椭圆C的右顶点.
(1)求椭圆C的方程;
(2)若经过点P(t,0)的直线l与椭圆C交于A,B两点,实数t取何值时以AB为直径的圆恒过点M?
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
题型二 定值问题
例2 (2022·蚌埠模拟)已知双曲线C:eq \f(x2,a2)-eq \f(y2,b2)=1(a>0,b>0)的虚轴长为4,直线2x-y=0为双曲线C的一条渐近线.
(1)求双曲线C的标准方程;
(2)记双曲线C的左、右顶点分别为A,B,过点T(2,0)的直线l交双曲线C于点M,N(点M在第一象限),记直线MA的斜率为k1,直线NB的斜率为k2,求证:eq \f(k1,k2)为定值.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
思维升华 圆锥曲线中的定值问题的常见类型及解题策略
(1)求代数式为定值.依题设条件,得出与代数式参数有关的等式,代入代数式,化简即可得出定值.
(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得.
(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.
跟踪训练2 (2022·郑州模拟)已知点F(0,1),直线l:y=4,P为曲线C上的任意一点,且|PF|是P到l的距离的eq \f(1,2).
(1)求曲线C的方程;
(2)若经过点F且斜率为k(k≠0)的直线交曲线C于M,N两点,线段MN的垂直平分线交y轴于点H,求证:eq \f(|FH|,|MN|)为定值.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
相关学案
这是一份人教A版普通高中数学一轮复习第八章第八节第四课时圆锥曲线中的定点、定直线与定值问题学案,共25页。
这是一份高考数学一轮复习第8章第9课时圆锥曲线中的定点、定值、定直线问题学案,共18页。
这是一份专题22 圆锥曲线中的定点、定值、定直线问题 微点1 圆锥曲线中的定点问题试题及答案,共37页。学案主要包含了微点综述,强化训练等内容,欢迎下载使用。