|学案下载
终身会员
搜索
    上传资料 赚现金
    适用于新教材提优版2024届高考数学一轮复习学案第八章直线和圆圆锥曲线8.13圆锥曲线中探索性与综合性问题新人教A版
    立即下载
    加入资料篮
    适用于新教材提优版2024届高考数学一轮复习学案第八章直线和圆圆锥曲线8.13圆锥曲线中探索性与综合性问题新人教A版01
    还剩1页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    适用于新教材提优版2024届高考数学一轮复习学案第八章直线和圆圆锥曲线8.13圆锥曲线中探索性与综合性问题新人教A版

    展开
    这是一份适用于新教材提优版2024届高考数学一轮复习学案第八章直线和圆圆锥曲线8.13圆锥曲线中探索性与综合性问题新人教A版,共2页。

    例1 (2023·南通模拟)已知双曲线C:eq \f(x2,a2)-eq \f(y2,b2)=1(a>0,b>0)的离心率为2,且过点eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(15),3),\r(2))).
    (1)求双曲线C的标准方程;
    (2)设Q为双曲线C右支第一象限上的一个动点,F为双曲线C的右焦点,在x轴的负半轴上是否存在定点M使得∠QFM=2∠QMF?若存在,求出点M的坐标;若不存在,请说明理由.
    ________________________________________________________________________
    ________________________________________________________________________
    ________________________________________________________________________
    ________________________________________________________________________
    思维升华 存在性问题的解题策略
    存在性的问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.
    (1)当条件和结论不唯一时,要分类讨论.
    (2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.
    (3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.
    跟踪训练1 (2022·淄博模拟)已知抛物线C:x2=2py(p>0)的焦点为F,点M(2,m)在抛物线C上,且|MF|=2.
    (1)求实数m的值及抛物线C的标准方程;
    (2)不过点M的直线l与抛物线C相交于A,B两点,若直线MA,MB的斜率之积为-2,试判断直线l能否与圆(x-2)2+(y-m)2=80相切?若能,求此时直线l的方程;若不能,请说明理由.
    ________________________________________________________________________
    ________________________________________________________________________
    ________________________________________________________________________
    ________________________________________________________________________
    题型二 圆锥曲线的综合问题
    例2 (2023·福州模拟)如图,O为坐标原点,抛物线C1:y2=2px(p>0)的焦点是椭圆C2:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的右焦点,A为椭圆C2的右顶点,椭圆C2的长轴长为|AB|=8,离心率e=eq \f(1,2).
    (1)求抛物线C1和椭圆C2的方程;
    (2)过A点作直线l交C1于C,D两点,射线OC,OD分别交C2于E,F两点,记△OEF和△OCD的面积分别为S1和S2,问是否存在直线l,使得S1∶S2=3∶13?若存在,求出直线l的方程;若不存在,请说明理由.
    ________________________________________________________________________
    ________________________________________________________________________
    ________________________________________________________________________
    ________________________________________________________________________
    思维升华 圆与圆锥曲线综合问题中,圆大多数是以工具的形式出现,解决此类问题的关键是掌握圆的一些常用性质.如:圆的半径r,弦长的一半h,弦心距d满足r2=h2+d2;圆的弦的垂直平分线过圆心;若AB是圆的直径,则圆上任一点P有eq \(PA,\s\up6(→))·eq \(PB,\s\up6(→))=0.
    跟踪训练2 如图,过抛物线E:y2=2px(p>0)焦点F的直线l交抛物线于点A,B,|AB|的最小值为4,直线x=-4分别交直线AO,BO于点C,D(O为原点).
    (1)求抛物线E的方程;
    (2)圆M过点C,D,交x轴于点G(t,0),H(m,0),证明:若t为定值时,m也为定值.并求t=-8时,△ABH面积S的最小值.
    ________________________________________________________________________
    ________________________________________________________________________
    ________________________________________________________________________
    ________________________________________________________________________
    相关学案

    高考数学一轮复习第8章第11课时圆锥曲线中的证明、探索性问题学案: 这是一份高考数学一轮复习第8章第11课时圆锥曲线中的证明、探索性问题学案,共17页。

    2024年高考数学第一轮复习精品导学案第72讲 圆锥曲线中的探索性问题(学生版)+教师版: 这是一份2024年高考数学第一轮复习精品导学案第72讲 圆锥曲线中的探索性问题(学生版)+教师版,共2页。学案主要包含了是否存在参数的成立问题,是否存在定点,是否存在定轨迹等问题等内容,欢迎下载使用。

    专题24 圆锥曲线中的存在性、探索性问题 微点2 圆锥曲线中的探索性问题试题及答案: 这是一份专题24 圆锥曲线中的存在性、探索性问题 微点2 圆锥曲线中的探索性问题试题及答案,共49页。学案主要包含了微点综述,强化训练等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map