2025届高数学考一轮复习三年真题汇编专题09平面向量
展开
这是一份2025届高数学考一轮复习三年真题汇编专题09平面向量,文件包含2025届高考一轮复习专题09平面向量参考答案doc、2025届高考一轮复习三年真题汇编专题09平面向量docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
【详解】因为,所以.
故选:D
2.B
【分析】利用平面向量模与数量积的坐标表示分别求得,从而利用平面向量余弦的运算公式即可得解.
【详解】因为,所以,
则,,
所以.
故选:B.
3.B
【分析】方法一:以为基底向量表示,再结合数量积的运算律运算求解;方法二:建系,利用平面向量的坐标运算求解;方法三:利用余弦定理求,进而根据数量积的定义运算求解.
【详解】方法一:以为基底向量,可知,
则,
所以;
方法二:如图,以为坐标原点建立平面直角坐标系,
则,可得,
所以;
方法三:由题意可得:,
在中,由余弦定理可得,
所以.
故选:B.
4.B
【分析】利用平面向量数量积的运算律,数量积的坐标表示求解作答.
【详解】向量满足,
所以.
故选:B
5.D
【分析】根据向量垂直的坐标运算可求的值.
【详解】因为,所以,
所以即,故,
故选:D.
6.B
【分析】由得,结合,得,由此即可得解.
【详解】因为,所以,即,
又因为,
所以,
从而.
故选:B.
7.B
【分析】根据几何条件以及平面向量的线性运算即可解出.
【详解】因为点D在边AB上,,所以,即,
所以.
故选:B.
8.C
【分析】根据给定模长,利用向量的数量积运算求解即可.
【详解】解:∵,
又∵
∴9,
∴
故选:C.
9.C
【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得
【详解】解:,,即,解得,
故选:C
10.D
【分析】根据向量的坐标运算求出,,再根据向量垂直的坐标表示即可求出.
【详解】因为,所以,,
由可得,,
即,整理得:.
故选:D.
11.D
【分析】作出图形,根据几何意义求解.
【详解】因为,所以,
即,即,所以.
如图,设,
由题知,是等腰直角三角形,
AB边上的高,
所以,
,
.
故选:D.
12.C
【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.
【详解】对A,当时,则,
所以,解得或,即必要性不成立,故A错误;
对C,当时,,故,
所以,即充分性成立,故C正确;
对B,当时,则,解得,即必要性不成立,故B错误;
对D,当时,不满足,所以不成立,即充分性不立,故D错误.
故选:C.
13.D
【分析】依题意建立平面直角坐标系,设,表示出,,根据数量积的坐标表示、辅助角公式及正弦函数的性质计算可得;
【详解】解:依题意如图建立平面直角坐标系,则,,,
因为,所以在以为圆心,为半径的圆上运动,
设,,
所以,,
所以
,其中,,
因为,所以,即;
故选:D
14.A
【分析】由题意作出示意图,然后分类讨论,利用平面向量的数量积定义可得,或然后结合三角函数的性质即可确定的最大值.
【详解】如图所示,,则由题意可知:,
由勾股定理可得
当点位于直线异侧时或PB为直径时,设,
则:
,则
当时,有最大值.
当点位于直线同侧时,设,
则:
,
,则
当时,有最大值.
综上可得,的最大值为.
故选:A.
【点睛】本题的核心在于能够正确作出示意图,然后将数量积的问题转化为三角函数求最值的问题,考查了学生对于知识的综合掌握程度和灵活处理问题的能力.
15.A
【分析】根据向量数量积分析可知等价于,结合充分、必要条件分析判断.
【详解】因为,可得,即,
可知等价于,
若或,可得,即,可知必要性成立;
若,即,无法得出或,
例如,满足,但且,可知充分性不成立;
综上所述,“”是“且”的必要不充分条件.
故选:A.
16.ACD
【分析】由及抛物线方程求得,再由斜率公式即可判断A选项;表示出直线的方程,联立抛物线求得,即可求出判断B选项;由抛物线的定义求出即可判断C选项;由,求得,为钝角即可判断D选项.
【详解】对于A,易得,由可得点在的垂直平分线上,则点横坐标为,
代入抛物线可得,则,则直线的斜率为,A正确;
对于B,由斜率为可得直线的方程为,联立抛物线方程得,
设,则,则,代入抛物线得,解得,则,
则,B错误;
对于C,由抛物线定义知:,C正确;
对于D,,则为钝角,
又,则为钝角,
又,则,D正确.
故选:ACD.
17./
【分析】直接由向量垂直的坐标表示求解即可.
【详解】由题意知:,解得.
故答案为:.
18.
【分析】设与的夹角为,依题意可得,再根据数量积的定义求出,最后根据数量积的运算律计算可得.
【详解】解:设与的夹角为,因为与的夹角的余弦值为,即,
又,,所以,
所以.
故答案为:.
19.
【分析】法一:根据向量的减法以及向量的数乘即可表示出,以为基底,表示出,由可得,再根据向量夹角公式以及基本不等式即可求出.
法二:以点为原点建立平面直角坐标系,设,由可得点的轨迹为以为圆心,以为半径的圆,方程为,即可根据几何性质可知,当且仅当与相切时,最大,即求出.
【详解】方法一:
,,
,当且仅当时取等号,而,所以.
故答案为:;.
方法二:如图所示,建立坐标系:
,,
,所以点的轨迹是以为圆心,以为半径的圆,当且仅当与相切时,最大,此时.
故答案为:;.
20.
【分析】法一:根据题意结合向量数量积的运算律运算求解;法二:换元令,结合数量积的运算律运算求解.
【详解】法一:因为,即,
则,整理得,
又因为,即,
则,所以.
法二:设,则,
由题意可得:,则,
整理得:,即.
故答案为:.
21.
【分析】解法一:以为基底向量,根据向量的线性运算求,即可得,设,求,结合数量积的运算律求的最小值;解法二:建系标点,根据向量的坐标运算求,即可得,设,求,结合数量积的坐标运算求的最小值.
【详解】解法一:因为,即,则,
可得,所以;
由题意可知:,
因为为线段上的动点,设,
则,
又因为为中点,则,
可得
,
又因为,可知:当时,取到最小值;
解法二:以B为坐标原点建立平面直角坐标系,如图所示,
则,
可得,
因为,则,所以;
因为点在线段上,设,
且为中点,则,
可得,
则,
且,所以当时,取到最小值为;
故答案为:;.
22.
【分析】根据正八边形的结构特征,分别以圆心为原点,所在直线为轴,所在直线为轴建立平面直角坐标系,即可求出各顶点的坐标,设,再根据平面向量模的坐标计算公式即可得到,然后利用即可解出.
【详解】以圆心为原点,所在直线为轴,所在直线为轴建立平面直角坐标系,如图所示:
则,,设,于是,
因为,所以,故的取值范围是.
故答案为:.
23.
【分析】空1:根据向量的线性运算,结合为的中点进行求解;空2:用表示出,结合上一空答案,于是可由表示,然后根据数量积的运算和基本不等式求解.
【详解】空1:因为为的中点,则,可得,
两式相加,可得到,
即,则;
空2:因为,则,可得,
得到,
即,即.
于是.
记,
则,
在中,根据余弦定理:,
于是,
由和基本不等式,,
故,当且仅当取得等号,
则时,有最大值.
故答案为:;.
24.(1);
(2).
【分析】(1)方法1,利用三角形面积公式求出,再利用余弦定理求解作答;方法2,利用三角形面积公式求出,作出边上的高,利用直角三角形求解作答.
(2)方法1,利用余弦定理求出a,再利用三角形面积公式求出即可求解作答;方法2,利用向量运算律建立关系求出a,再利用三角形面积公式求出即可求解作答.
【详解】(1)方法1:在中,因为为中点,,,
则,解得,
在中,,由余弦定理得,
即,解得,则,
,
所以.
方法2:在中,因为为中点,,,
则,解得,
在中,由余弦定理得,
即,解得,有,则,
,过作于,于是,,
所以.
(2)方法1:在与中,由余弦定理得,
整理得,而,则,
又,解得,而,于是,
所以.
方法2:在中,因为为中点,则,又,
于是,即,解得,
又,解得,而,于是,
所以.
相关试卷
这是一份专题09 平面向量(文科)-十年(2014-2023)高考数学真题分项汇编(全国通用)
这是一份【真题汇编】高考数学 专题09 平面向量、不等式及复数.zip,文件包含真题汇编高考数学专题09平面向量不等式及复数原卷版docx、真题汇编高考数学专题09平面向量不等式及复数解析版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
这是一份十年高考数学真题分项汇编(2014-2023)(文科)专题09平面向量(文科)(Word版附解析),共34页。试卷主要包含了选择题,填空题,多选题等内容,欢迎下载使用。