|试卷下载
终身会员
搜索
    上传资料 赚现金
    专题05 数列(四大类型题)15区新题速递(学生卷)- 2024年高考数学一模试题分类汇编(上海专用)
    立即下载
    加入资料篮
    专题05 数列(四大类型题)15区新题速递(学生卷)- 2024年高考数学一模试题分类汇编(上海专用)01
    专题05 数列(四大类型题)15区新题速递(学生卷)- 2024年高考数学一模试题分类汇编(上海专用)02
    专题05 数列(四大类型题)15区新题速递(学生卷)- 2024年高考数学一模试题分类汇编(上海专用)03
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题05 数列(四大类型题)15区新题速递(学生卷)- 2024年高考数学一模试题分类汇编(上海专用)

    展开
    这是一份专题05 数列(四大类型题)15区新题速递(学生卷)- 2024年高考数学一模试题分类汇编(上海专用),共7页。试卷主要包含了等差数列,等比数列,等差,数列新定义等内容,欢迎下载使用。


    一、等差数列
    1.(2024·上海嘉定·统考一模)己知等差数列,公差为,则下列命题正确的是( )
    A.函数可能是奇函数
    B.若函数是偶函数,则
    C.若,则函数是偶函数
    D.若,则函数的图象是轴对称图形
    2.(2024·上海闵行·统考一模)已知,,数列是公差为1的等差数列,若的值最小,则 .
    3.(2024·上海宝山·统考一模)已知等差数列的前项和为,若则
    4.(2024·上海普陀·统考一模)设是等差数列的前项和,若,则 .
    5.(2024上·上海浦东新·高三统考期末)已知是等差数列的前项和,若,则满足的正整数的值为 .
    6.(2024·上海青浦·统考一模)已知数列的通项公式为,记,若,则正整数的值为 .
    7.(2024·上海普陀·统考一模)若数列满足,(,),则的最小值是 .
    8.(2024·上海杨浦·统考一模)等差数列中,若,,则的前10项和为 .
    9.(2024·上海嘉定·统考一模)已知数列的前n项和为,其中.
    (1)求的通项公式;
    (2)求数列的前n项和.
    10.(2024·上海长宁·统考一模)已知等差数列的前项和为,公差.
    (1)若,求的通项公式;
    (2)从集合中任取3个元素,记这3个元素能成等差数列为事件,求事件发生的概率.
    11.(2024·上海崇明·统考一模)已知.
    (1)若函数是实数集R上的严格增函数,求实数m的取值范围;
    (2)已知数列是等差数列(公差),.是否存在数列使得数列是等差数列?若存在,请写出一个满足条件的数列,并证明此时的数列是等差数列;若不存在,请说明理由;
    (3)若,是否存在直线满足:①对任意的都有成立,
    ②存在使得?若存在,请求出满足条件的直线方程;若不存在,请说明理由.
    二、等比数列
    12.(2024·上海金山·统考一模)设集合,、均为的非空子集(允许).中的最大元素与中的最小元素分别记为,则满足的有序集合对的个数为( ).
    A.B.C.D.
    13.(2024·上海闵行·统考一模)已知数列为无穷等比数列,若,则的取值范围为 .
    14.(2024·上海奉贤·统考一模)已知数列是各项为正的等比数列,,,则其前10项和 .
    15.(2024·上海宝山·统考一模)已知函数,正项等比数列满足,则
    16.(2024·上海崇明·统考一模)已知等比数列首项,公比,则 .
    17.(2024·上海金山·统考一模)已知数列满足,且.
    (1)求的值;
    (2)若数列为严格增数列,其中是常数,求的取值范围.
    18.(2024·上海青浦·统考一模)已知有穷等差数列的公差d大于零.
    (1)证明:不是等比数列;
    (2)是否存在指数函数满足:在处的切线的交轴于,在处的切线的交轴于,…,在处的切线的交轴于?若存在,请写出函数的表达式,并说明理由;若不存在,也请说明理由;
    (3)若数列中所有项按照某种顺序排列后可以构成等比数列,求出所有可能的m的取值.
    19.(2024·上海普陀·统考一模)若存在常数,使得数列满足(,),则称数列为“数列”.
    (1)判断数列:1,2,3,8,49是否为“数列”,并说明理由;
    (2)若数列是首项为的“数列”,数列是等比数列,且与满足,求的值和数列的通项公式;
    (3)若数列是“数列”,为数列的前项和,,,试比较与的大小,并证明.
    三、等差、等比系列综合
    20.(2024·上海杨浦·统考一模)等比数列的首项,公比为,数列满足(是正整数),若当且仅当时,的前项和取得最大值,则取值范围是( )
    A.B.C.D.
    21.(2024·上海徐汇·统考一模)已知等差数列的前项和为,,.
    (1)求数列的通项公式;
    (2)若等比数列的公比为,且满足,求数列的前项和.
    22.(2024上·上海虹口·高三统考期末)2022年12月底,某厂的废水池已储存废水800吨,以后每月新产生的2吨废水也存入废水池.该厂2023年开始对废水处理后进行排放,1月底排放10吨处理后的废水,计划以后每月月底排放一次,每月排放处理后的废水比上月增加2吨.
    (1)若按计划排放,该厂在哪一年的几月份排放后,第一次将废水池中的废水排放完毕?
    (2)该厂加强科研攻关,提升废水处理技术,经过深度净化的废水可以再次利用,该厂从2023年7月开始对该月计划排放的废水进行深度净化,首次净化废水5吨,以后每月比上月提高20%的净化能力.试问:哪一年的几月份开始,当月排放的废水能被全部净化?
    23.(2024上·上海松江·高三统考期末)已知数列为等差数列,是公比为的等比数列,且.
    (1)证明:;
    (2)若集合,求集合中的元素个数.
    24.(2024·上海杨浦·统考一模)设函数,(其中常数,),无穷数列满足:首项,.
    (1)判断函数的奇偶性,并说明理由;
    (2)若数列是严格增数列,求证:当时,数列不是等差数列;
    (3)当时,数列是否可能为公比小于0的等比数列?若可能,求出所有公比的值;若不可能,请说明理由.
    四、数列新定义
    25.(2024·上海徐汇·统考一模)已知数列为无穷数列.若存在正整数,使得对任意的正整数,均有,则称数列为“阶弱减数列”.有以下两个命题:①数列为无穷数列且(为正整数),则数列是“阶弱减数列”的充要条件是;②数列为无穷数列且(为正整数),若存在,使得数列是“阶弱减数列”,则.那么( )
    A.①是真命题,②是假命题B.①是假命题,②是真命题
    C.①、②都是真命题D.①、②都是假命题
    26.(2024上·上海静安·高三校考阶段练习)设是一个无穷数列的前项和,若一个数列满足对任意的正整数,不等式恒成立,则称数列为和谐数列,给出下列两个命题:
    ①若对任意的正整数均有,则为和谐数列;
    ②若等差数列是和谐数列,则一定存在最小值;
    下列说法正确的是( ).
    A.① 是真命题,② 是假命题B.① 是假命题,② 真命题
    C.① 和 ② 都是真命题D.① 和 ② 都是假命题
    27.(2024上·上海·高三上海中学校考期中)给定一张的数表(如下表),
    统计,,,中各数出现次数.若对任意,1,,n,均满足数k恰好出现次,则称之为阶自指表,举例来说,下表是一张4阶自指表.
    对于如下的一张7阶自指表.记,N的所有可能值为 .
    28.(2024上·上海杨浦·高三复旦附中校考期中)已知数列,若对于任意正整数n,仍为数列中的项,则称数列为“回归数列”.
    (1)已知 ,判断数列是否为“回归数列”,并说明理由;
    (2)若数列为“回归数列”,且对于任意正整数n,均有成立,证明:数列为等差数列.
    0
    1
    2
    3
    n
    0
    1
    2
    3
    1
    2
    1
    0
    0
    1
    2
    3
    4
    5
    6
    相关试卷

    专题04 三角函数与解三角形(三大类型题)精选15区真题(教师卷)- 2024年高考数学一模试题分类汇编(上海专用): 这是一份专题04 三角函数与解三角形(三大类型题)精选15区真题(教师卷)- 2024年高考数学一模试题分类汇编(上海专用),共20页。试卷主要包含了三角函数,三角恒等变换,解三角形等内容,欢迎下载使用。

    专题04 三角函数与解三角形(三大类型题)精选15区真题(学生卷)- 2024年高考数学一模试题分类汇编(上海专用): 这是一份专题04 三角函数与解三角形(三大类型题)精选15区真题(学生卷)- 2024年高考数学一模试题分类汇编(上海专用),共5页。试卷主要包含了三角函数,三角恒等变换,解三角形等内容,欢迎下载使用。

    专题03 函数(三大类型题)15区新题速递(学生卷)- 2024年高考数学一模试题分类汇编(上海专用): 这是一份专题03 函数(三大类型题)15区新题速递(学生卷)- 2024年高考数学一模试题分类汇编(上海专用),共7页。试卷主要包含了函数及其性质,17题,指对数函数,8题,函数的应用,6题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题05 数列(四大类型题)15区新题速递(学生卷)- 2024年高考数学一模试题分类汇编(上海专用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map