终身会员
搜索
    上传资料 赚现金
    苏科版七年级数学下册专题03平行线中的拐点问题压轴题三种模型全攻略(原卷版+解析)
    立即下载
    加入资料篮
    苏科版七年级数学下册专题03平行线中的拐点问题压轴题三种模型全攻略(原卷版+解析)01
    苏科版七年级数学下册专题03平行线中的拐点问题压轴题三种模型全攻略(原卷版+解析)02
    苏科版七年级数学下册专题03平行线中的拐点问题压轴题三种模型全攻略(原卷版+解析)03
    还剩35页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    苏科版七年级数学下册专题03平行线中的拐点问题压轴题三种模型全攻略(原卷版+解析)

    展开
    这是一份苏科版七年级数学下册专题03平行线中的拐点问题压轴题三种模型全攻略(原卷版+解析),共38页。

    目录
    TOC \ "1-3" \h \u \l "_Tc16709" 【典型例题】 PAGEREF _Tc16709 \h 1
    \l "_Tc5711" 【考点一 平行线中一个拐点问题】 PAGEREF _Tc5711 \h 1
    \l "_Tc21104" 【考点二 平行线中两点及多点拐点问题】 PAGEREF _Tc21104 \h 3
    \l "_Tc961" 【考点三 平行线中在生活上的拐点问题】 PAGEREF _Tc961 \h 6
    \l "_Tc14438" 【过关检测】 PAGEREF _Tc14438 \h 9
    【典型例题】
    【考点一 平行线中一个拐点问题】
    例题:(2022·四川南充·九年级期中)如图,,若,,则∠E=______.
    【变式训练】
    1.(2022·内蒙古·乌海市第二中学七年级期中)如图,AB∥EF,则∠A,∠C,∠E满足的数量关系是______.
    2.(2022·甘肃·凉州区洪祥镇九年制学校七年级期末)如图,若ABCD,则,,则______.
    【考点二 平行线中两点及多点拐点问题】
    例题:(2022·云南·弥勒市朋普中学七年级阶段练习)如图所示,、BEFD是AB、CD之间的一条折线,则∠1+∠2+∠3+∠4=_____.
    【变式训练】
    1.(2022·浙江·兰溪市实验中学七年级期中)如图,直线 l1∥l2,若∠1=40°,∠2 比∠3 大 10°,则∠4=____.
    2.(2022·辽宁·兴城市第二初级中学七年级阶段练习)①如图1,ABCD,则∠A+∠E+∠C=180°;②如图2,ABCD,则∠E=∠A+∠C;③如图3,若ABEF,则∠x=180°-∠α-∠γ+∠β;④如图4,ABCD,则∠A=∠C+∠P.以上结论正确的是_____.
    【考点三 平行线中在生活上的拐点问题】
    例题:(2022·四川泸州·七年级期末)如图是三岛的平面图,岛在岛的北偏东方向,在岛的北偏西方向,则____________.
    【变式训练】
    1.(2022·黑龙江·哈尔滨德强学校七年级期中)如图,汽车灯的剖面图,从位于点的灯发出光照射到凹面镜上反射出的光线,都是水平线,若,,则的度数为______.
    2.(2022·山东·济南市莱芜区雪野中心中学期中)幸福乡要修建一条灌溉水渠,如图,水渠从A村沿北偏东60°的方向到B村,从B村沿北偏西30°方向到C村.若水渠从C村沿CD方向修建可以保持与AB的方向一致,则∠DCB的度数为_____°
    【过关检测】
    一、选择题
    1.(2022·河北·宽城满族自治县第三中学七年级期中)如图,ABCD,∠1=30°,∠2=40°,则∠EPF的度数是( )
    A.110°B.90°C.80°D.70°
    2.(2022·广东·深圳市龙岗区宏扬学校七年级期中)某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示,已知,,,则的度数是 ( )
    A.B.C.D.
    3.(2022·贵州安顺·七年级期末)如图,某沿湖公路有三次拐弯,若第一次的拐角∠A=110°,第二次的拐角∠B=140°,第三次的拐角为∠C,第三次拐弯后的道路恰好和第一次拐弯之前的道路平行,则∠C的度数是( )
    A.130°B.140°C.145°D.150°
    二、填空题
    4.(2022·上海· 七年级期中)如图,ABCD,为平行线间一点,若,,则______度.
    5.(2022·辽宁·阜新市第一中学七年级期中)如图,某县积极推进“乡村振兴计划”,要对一段水渠进行扩建.如图,已知现有水渠从A地沿北偏东50°的方向到B地,又从B地沿北偏西20°的方向到C地.现要从C地出发修建一段新渠CD,使,则∠BCD的度数为_____度.
    6.(2022·河南·商水县希望初级中学七年级期末)如图,,的角平分线的反向延长线和的角平分线交于点,,则的度数为_________.
    三、解答题
    7.(2022·江西赣州·七年级期中)根据下列叙述填依据.
    (1)已知如图1,,求∠B+∠BFD+∠D的度数.
    解:过点F作
    所以∠B+∠BFE=180°( )
    因为、(已知)
    所以 ( )
    所以∠D+∠DFE=180°( )
    所以∠B+∠BFE+∠D=∠B+∠BFE+∠EFD +∠D=360°
    (2)根据以上解答进行探索.如图(2)(3)ABEF、∠D与∠B、∠F有何数量关系(请选其中一个简要证明)
    备用图:
    (3)如图(4)ABEF,∠C=90°,∠与∠、∠有何数量关系(直接写出结果,不需要说明理由)
    8.(2022·内蒙古·扎赉特旗音德尔第三中学七年级期末)已知直线,和,分别交于,点,点,分别在线,上,且位于的左侧,点在直线上,且不和点,重合.
    (1)如图,有一动点在线段之间运动时,求证:;
    (2)如图,当动点在点之上运动时,猜想、、有何数量关系,并说明理由.
    9.(2022·广东·龙岭初级中学七年级期中)如图,图①是一种网红弹弓的实物图,在两头上系上皮筋,拉动皮筋可形成平面示意图如图②和图③,弹弓的两边可看成是平行的,即,各活动小组探索与,之间数量关系时,有如下发现,
    (1)在图②所示的图形中,若,,则___________
    (2)在图⑧中,若,,则_________
    (3)有同学在图②和图③的基础上,面出了图④所示的图形,其中,请判断,,之间的关系,并说明理由.
    10.(2022·山东省济南第十二中学八年级阶段练习)探究:
    (1)如图①,已知ABCD,图中∠1,∠2,∠3之间有什么关系?
    (2)如图②,已知ABCD,图中∠1,∠2,∠3,∠4之间有什么关系?
    (3)如图③,已知ABCD,请直接写出图中∠1,∠2,∠3,∠4,∠5之间的关系;
    11.(2022·河北·宽城满族自治县第三中学七年级期中)已知:ABEF,在平面内任意选取一点C.利用平行线的性质,探究∠B、∠F、∠C满足的数量关系.


    (1)将探究∠B、∠C、∠F之间的数量关系填写下表:
    (2)请选择其中一个图形进行说明理由.
    12.(2020·四川乐山·七年级期末)问题情境:如图 1,,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:如图 2,过 P 作,通过平行线性质,可得∠APC=50°+60°=110°
    问题迁移:
    (1)如图 3,,点 P 在射线 OM 上运动,当点 P 在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β,∠CPD、∠α、∠β之间有何数量关系?请说明理由
    (2)在(1)的条件下,如果点P在A、B两点外侧运动时, 点 P 与 点A、B、O三点不重合,请你直接写出∠CPD、 间的数量关系.
    图形
    ∠B、∠F、∠C满足的数量关系
    图(1)
    图(2)
    图(3)
    图(4)

    图(5)
    图(6)
    专题03 平行线中的拐点问题压轴题三种模型全攻略
    【考点导航】
    目录
    TOC \ "1-3" \h \u \l "_Tc16709" 【典型例题】 PAGEREF _Tc16709 \h 1
    \l "_Tc5711" 【考点一 平行线中一个拐点问题】 PAGEREF _Tc5711 \h 1
    \l "_Tc21104" 【考点二 平行线中两点及多点拐点问题】 PAGEREF _Tc21104 \h 3
    \l "_Tc961" 【考点三 平行线中在生活上的拐点问题】 PAGEREF _Tc961 \h 6
    \l "_Tc14438" 【过关检测】 PAGEREF _Tc14438 \h 9
    【典型例题】
    【考点一 平行线中一个拐点问题】
    例题:(2022·四川南充·九年级期中)如图,,若,,则∠E=______.
    【答案】##66度
    【分析】如图所示,过点E作,则,根据两直线平行内错角相等分别求出,则.
    【详解】解:如图所示,过点E作,
    ∵,
    ∴,
    ∴,
    ∴,
    故答案为:.
    【点睛】本题主要考查了平行线的性质,正确作出辅助线求出是解题的关键.
    【变式训练】
    1.(2022·内蒙古·乌海市第二中学七年级期中)如图,AB∥EF,则∠A,∠C,∠E满足的数量关系是______.
    【答案】
    【分析】根据两直线平行,同旁内角互补可直接得到答案.
    【详解】如下图所示,过点C作,
    ∵,
    ∴(两直线平行,同旁内角互补),
    ∵,,
    ∴,
    ∴(两直线平行,同旁内角互补),
    ∴,
    ∴,
    ∴在原图中,
    故答案为:.
    【点睛】本题考查平行直线的性质,解题的关键是熟练掌握两直线平行,同旁内角互补.
    2.(2022·甘肃·凉州区洪祥镇九年制学校七年级期末)如图,若ABCD,则,,则______.
    【答案】##20度
    【分析】过点作,利用平行线的性质可得的度数,进而可得的度数,再结合可得,进而可得的度数.
    【详解】解:如图,过点作,则,




    故答案为:.
    【点睛】本题主要考查平行线的性质,构造合适的辅助线是解题关键.
    【考点二 平行线中两点及多点拐点问题】
    例题:(2022·云南·弥勒市朋普中学七年级阶段练习)如图所示,、BEFD是AB、CD之间的一条折线,则∠1+∠2+∠3+∠4=_____.
    【答案】
    【分析】连接BD,根据平行线的性质由AB∥CD得到∠ABD+∠CDB=180°,根据四边形的内角和得到∠2+∠3+∠EBD+∠FBD=360°,于是得到结论.
    【详解】解:连接BD,如图,
    ∵AB∥CD,
    ∴∠ABD+∠CDB=180°,
    ∵∠2+∠3+∠EBD+∠FBD=360°,
    ∴∠2+∠3+∠EBD+∠FDB+∠ABD+∠CDB=540°,
    即∠1+∠2+∠3+∠4=540°.
    故答案为:540°.
    【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
    【变式训练】
    1.(2022·浙江·兰溪市实验中学七年级期中)如图,直线 l1∥l2,若∠1=40°,∠2 比∠3 大 10°,则∠4=____.
    【答案】30°##30度
    【分析】过A点作AB直线l1,过C点作CD直线l2,由平行线的性质可得∠5=∠1=40°,∠4=∠8,∠6=∠7,结合∠2比∠3大10°可得∠5+∠6-∠7-∠8=10°,进而可求解.
    【详解】解:过A点作AB直线l1,过C点作CD直线l2,
    ∴∠5=∠1=40°,∠4=∠8,
    ∵直线l1l2,
    ∴ABCD,
    ∴∠6=∠7,
    ∵∠2比∠3大10°,
    ∴∠2-∠3=10°,
    ∵∠5+∠6=∠2,∠7+∠8=∠3,
    ∴∠5+∠6-∠7-∠8=10°,
    ∴40°-∠4=10°,
    解得∠4=30°.
    故答案为:30°.
    【点睛】本题主要考查平行线的性质,角的计算,作适当的辅助线是解题的关键.
    2.(2022·辽宁·兴城市第二初级中学七年级阶段练习)①如图1,ABCD,则∠A+∠E+∠C=180°;②如图2,ABCD,则∠E=∠A+∠C;③如图3,若ABEF,则∠x=180°-∠α-∠γ+∠β;④如图4,ABCD,则∠A=∠C+∠P.以上结论正确的是_____.
    【答案】②③④
    【分析】①过点E作EFAB,由平行线的性质即可得出结论;
    ②过点点E作EFAB,由平行线的性质即可得出结论;
    ③如图3,过点C作CDAB,延长AB到G,由平行线的性质可得出180°-∠ABH+∠HCF-∠EFC=∠BHC;
    ④过点P作PFAB,由平行线的性质可得出∠A=∠CPF+∠APC=∠C+∠APC.
    【详解】解:①如图1,过点E作EFAB,
    ∵ABCD,
    ∴ABEFCD,
    ∴∠A+∠AEF=180°,∠C+∠CEF=180°,
    ∴∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°,则①错误;
    ②如图2,过点E作EFAB,
    ∵ABCD,
    ∴ABEFCD,
    ∴∠A=∠AEF,∠C=∠CEF,
    ∴∠A+∠C=∠CEF+∠AEF=∠AEC,则②正确;
    ③如图3,过点C作CDAB,延长AB到G,
    ∵ABEF,
    ∴ABEFCD,
    ∴∠DCF=∠EFC,
    由②的结论可知∠GBH+∠HCD=∠BHC,
    又∵,∠HCD=∠HCF-∠DCF
    ∴180°-∠ABH+∠HCF-∠DCF=∠BHC,
    ∴180°-∠ABH+∠HCF-∠EFC=∠BHC,
    ∴,故③正确;
    ④如图4,过点P作PFAB,
    ∵ABCD,
    ∴ABPFCD,
    ∴∠A=∠APF,∠C=∠CPF,
    ∴∠A=∠CPF+∠APC=∠C+∠APC,则④正确;
    故答案为:②③④.
    【点睛】本题考查的是平行线的性质,根据题意作出辅助线是解答此题的关键.
    【考点三 平行线中在生活上的拐点问题】
    例题:(2022·四川泸州·七年级期末)如图是三岛的平面图,岛在岛的北偏东方向,在岛的北偏西方向,则____________.
    【答案】
    【分析】根据方位角的概念,过点作辅助线,构造两组平行线,利用平行线的性质即可求解.
    【详解】如图,作,
    ∵,
    ∴.
    ∵,
    ∴.
    ∵,
    ∴.
    ∴.
    故答案为:.
    【点睛】本题考查了方位角的概念,解答题目的关键是作辅助线,构造平行线.两直线平行,内错角相等.
    【变式训练】
    1.(2022·黑龙江·哈尔滨德强学校七年级期中)如图,汽车灯的剖面图,从位于点的灯发出光照射到凹面镜上反射出的光线,都是水平线,若,,则的度数为______.
    【答案】##60度
    【分析】如图所示,过点O作,则,根据平行线的性质求解即可.
    【详解】解:如图所示,过点O作,
    ∵光线,都是水平线,
    ∴,
    ∴,
    ∴,
    ∴,
    故答案为:.
    【点睛】本题主要考查了平行线的性质,熟知两直线平行,内错角相等是解题的关键.
    2.(2022·山东·济南市莱芜区雪野中心中学期中)幸福乡要修建一条灌溉水渠,如图,水渠从A村沿北偏东60°的方向到B村,从B村沿北偏西30°方向到C村.若水渠从C村沿CD方向修建可以保持与AB的方向一致,则∠DCB的度数为_____°
    【答案】90度##90°
    【分析】根据CD与AB的方向一致,可得,即有∠DCB=∠CBA,根据,可得∠A+∠ABN=180°,即有∠ABC=90°,则有∠DCB=90°,问题得解.
    【详解】如图,设置点M、N,
    根据题意有:,
    ∵CD与AB的方向一致,
    ∴,
    ∴∠DCB=∠CBA,
    ∵,
    ∴∠A+∠ABN=180°,
    ∵∠A=60°,∠ABN=∠ABC+∠CBN,∠CBN=30°,
    ∴∠ABC=90°,
    ∴∠DCB=90°,
    故答案为:90°.
    【点睛】本题考查了平行线的性质、方位角的应用,明确题意,灵活运用平行线的性质是解答本题的关键.
    【过关检测】
    一、选择题
    1.(2022·河北·宽城满族自治县第三中学七年级期中)如图,ABCD,∠1=30°,∠2=40°,则∠EPF的度数是( )
    A.110°B.90°C.80°D.70°
    【答案】D
    【分析】如图,过点P作PMAB,利用平行线的性质得到∠EPF=∠1+∠2即可.
    【详解】解:如图,过点P作PMAB,
    ∴∠3=∠1=30°,
    又∵,
    ∴,
    ∴∠4=∠2=40°,
    ∴∠3+∠4=∠1+∠2=70°,
    即∠EPF=70°,
    故选:D.
    【点睛】本题考查平行线的判定定理以及平行线的性质.注意如果两条直线都和第三条直线平行,那么这两条直线也互相平行的运用.
    2.(2022·广东·深圳市龙岗区宏扬学校七年级期中)某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示,已知,,,则的度数是 ( )
    A.B.C.D.
    【答案】B
    【分析】延长交于,依据,,可得,再根据三角形外角性质,即可得到.
    【详解】解:如图,延长交于,
    ∵,,

    又,,

    故选:B.
    【点睛】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.
    3.(2022·贵州安顺·七年级期末)如图,某沿湖公路有三次拐弯,若第一次的拐角∠A=110°,第二次的拐角∠B=140°,第三次的拐角为∠C,第三次拐弯后的道路恰好和第一次拐弯之前的道路平行,则∠C的度数是( )
    A.130°B.140°C.145°D.150°
    【答案】D
    【分析】过点B作BEAD,利用平行线的性质可得∠ABE=110°,从而求出∠EBC=30°,然后再利用平行线的性质,即可解答.
    【详解】解:过点B作BEAD,
    ∴∠A=∠ABE=110°,
    ∵∠ABC=140°,
    ∴∠EBC=∠ABC−∠ABE=30°,
    ∵ADCF,
    ∴BECF,
    ∴∠C=180°−∠EBC=150°,
    故选:D.
    【点睛】本题考查了平行线的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.
    二、填空题
    4.(2022·上海· 七年级期中)如图,ABCD,为平行线间一点,若,,则______度.
    【答案】100
    【分析】过点作的平行线,由平行线的判定与性质即可求解.
    【详解】解:过点作,则,
    ,,

    ,,

    故答案为:.
    【点睛】本题考查了平行线的判定与性质,解题的关键是过拐点准确作出的平行线.
    5.(2022·辽宁·阜新市第一中学七年级期中)如图,某县积极推进“乡村振兴计划”,要对一段水渠进行扩建.如图,已知现有水渠从A地沿北偏东50°的方向到B地,又从B地沿北偏西20°的方向到C地.现要从C地出发修建一段新渠CD,使,则∠BCD的度数为_____度.
    【答案】110
    【分析】根据方向角和平行线的性质:内错角相等即可求出.
    【详解】解:B点在A点的北偏东50°,C点在B点北偏西20°,
    ∴,

    ∴,
    故答案为:110.
    【点睛】本题考查平行线的性质:内错角相等,利用方位角进行角度的转化计算是解题的关键.
    6.(2022·河南·商水县希望初级中学七年级期末)如图,,的角平分线的反向延长线和的角平分线交于点,,则的度数为_________.
    【答案】82
    【分析】过点作,得,得,;根据,是,的角平分线,;;根据四边形内角和为,,即可求出的角度.
    【详解】如图:过点作,
    ∵,
    ∴,
    ∴;,
    ∵,是,的角平分线,
    ∴;,
    ∴;,
    ∴在四边形中,

    ∴,
    ∴,
    ∵,
    ∴,,
    ∴,
    ∴,
    解得:,
    ∴,
    故答案为:.
    【点睛】本题考查平行线的性质,等量代换,四边形内角和,角平分线;设角等于,;角的等量代换是解题的关键.
    三、解答题
    7.(2022·江西赣州·七年级期中)根据下列叙述填依据.
    (1)已知如图1,,求∠B+∠BFD+∠D的度数.
    解:过点F作
    所以∠B+∠BFE=180°( )
    因为、(已知)
    所以 ( )
    所以∠D+∠DFE=180°( )
    所以∠B+∠BFE+∠D=∠B+∠BFE+∠EFD +∠D=360°
    (2)根据以上解答进行探索.如图(2)(3)ABEF、∠D与∠B、∠F有何数量关系(请选其中一个简要证明)
    备用图:
    (3)如图(4)ABEF,∠C=90°,∠与∠、∠有何数量关系(直接写出结果,不需要说明理由)
    【答案】(1)两直线平行,同旁内角互补;,平行于同一直线的两直线平行;两直线平行,同旁内角互补
    (2)见解析
    (3)
    【分析】(1)过点F作,得到∠B+∠BFE=180°,再根据、得到,∠D+∠DFE=180°,最后利用角度的和差即可得出答案;
    (2)类比问题(1)的解题方法即可得解;
    (3)类比问题(1)的解题方法即可得解.
    (1)
    解:过点F作,如图,
    ∴∠B+∠BFE=180°(两直线平行,同旁内角相等),
    ∵、(已知)
    ∴(平行于同一直线的两直线平行),
    ∴∠D+∠DFE=180°(两直线平行,同旁内角互补),
    ∴∠B+∠BFE+∠D=∠B+∠BFE+∠EFD +∠D=360°;
    故答案为:两直线平行,同旁内角互补;,平行于同一直线的两直线平行;
    两直线平行,同旁内角互补;
    (2)
    解:选图(2),∠D与∠B、∠F的数量关系为:∠BDF+∠B=∠F;
    理由如下:
    过点D作DC//AB,
    ∴∠B=∠BDC,
    ∵,,
    ∴,
    ∴∠CDF=∠F,
    ∴∠BDF+∠BDC =∠F,
    即∠BDF+∠B=∠F;
    选图(3),∠D与∠B、∠F的数量关系:∠BDF+∠B=∠F
    过点D作,
    ∴∠B=∠BDC,
    ∵,,
    ∴,
    ∴∠CDF=∠F,
    ∴∠BDF+∠BDC =∠F,
    即∠BDF+∠B=∠F
    ∠BDF+∠B=∠F ;
    (3)
    解:
    如图(4)所示,过点C作,过D作,
    ∴,,
    ∵,,
    ∴,
    ∴,
    ∵ ,,
    ∴.
    【点睛】本题考查根据平行线的性质探究角的关系和平行线公理推论的运用,熟练掌握平行线的性质和平行线公理推论的运用是解题的关键.
    8.(2022·内蒙古·扎赉特旗音德尔第三中学七年级期末)已知直线,和,分别交于,点,点,分别在线,上,且位于的左侧,点在直线上,且不和点,重合.
    (1)如图,有一动点在线段之间运动时,求证:;
    (2)如图,当动点在点之上运动时,猜想、、有何数量关系,并说明理由.
    【答案】(1)证明见解析;
    (2),理由见解析.
    【分析】过点作,根据可知,故可得出,再由即可得出结论;
    过作,依据,可得,进而得到,,再根据,即可得出.
    (1)
    证明:如图,过点作,


    ,.
    又,

    (2)
    解:.
    理由如下:如图,过作,


    ,,


    【点睛】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.
    9.(2022·广东·龙岭初级中学七年级期中)如图,图①是一种网红弹弓的实物图,在两头上系上皮筋,拉动皮筋可形成平面示意图如图②和图③,弹弓的两边可看成是平行的,即,各活动小组探索与,之间数量关系时,有如下发现,
    (1)在图②所示的图形中,若,,则___________
    (2)在图⑧中,若,,则_________
    (3)有同学在图②和图③的基础上,面出了图④所示的图形,其中,请判断,,之间的关系,并说明理由.
    【答案】(1)
    (2)
    (3)
    【分析】(1)如图所示,过点P作,利用平行线的性质得到由此即可得到答案;
    (2)如图所示,过点P作,利用平行线的性质得到,在求出的度数即可得到答案;
    (3)如图所示,过点P作,由平行线的性质得到,再由即可得到结论.
    (1)
    解:如图所示,过点P作,
    ∵,
    ∴,
    ∴,
    ∴,
    故答案为:;
    (2)
    解:如图所示,过点P作,
    ∵,
    ∴,
    ∴,
    ∵,

    ∴,
    故答案为:;
    (3)
    解:,理由如下:
    如图所示,过点P作,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴.
    【点睛】本题主要考查了平行线的性质,正确作出辅助线是解题的关键.
    10.(2022·山东省济南第十二中学八年级阶段练习)探究:
    (1)如图①,已知ABCD,图中∠1,∠2,∠3之间有什么关系?
    (2)如图②,已知ABCD,图中∠1,∠2,∠3,∠4之间有什么关系?
    (3)如图③,已知ABCD,请直接写出图中∠1,∠2,∠3,∠4,∠5之间的关系;
    【答案】(1)∠1+∠3=∠2;
    (2)∠1+∠3=∠2+∠4;
    (3)∠1+∠3+∠5=∠2+∠4.
    【分析】(1)过点E作EMAB,根据平行线的性质及角的和差求解即可;
    (2)过点F作NFAB,结合(1)并根据平行线的性质及角的和差求解即可;
    (3)过点G作GMAB,结合(2)并根据平行线的性质及角的和差求解即可.
    (1)
    解:如图①,过点E作EMAB,
    ∵ABCD,
    ∴ABCDEM,
    ∴∠1=∠NEM,∠3=∠MEF,
    ∴∠1+∠3=∠NEM+∠MEF,
    即∠1+∠3=∠2;
    (2)
    如图②,过点F作NFAB,
    ∵ABCD,
    ∴ABCDFN,
    ∴∠4=∠NFH,
    由(1)知,∠1+∠EFN=∠2,
    ∴∠1+∠EFN+∠NFH=∠2+∠4,
    即∠1+∠3=∠2+∠4;
    (3)
    如图③,过点G作GMAB,
    ∵ABCD,
    ∴ABCDGM,
    ∴∠5=∠MGN,
    由(2)得,∠1+∠3=∠2+∠FGM,
    ∴∠1+∠3+∠5=∠2+∠FGM+∠MGN,
    即∠1+∠3+∠5=∠2+∠4.
    【点睛】此题考查了平行线的性质,熟记两直线平行,内错角相等是解题的关键.
    11.(2022·河北·宽城满族自治县第三中学七年级期中)已知:ABEF,在平面内任意选取一点C.利用平行线的性质,探究∠B、∠F、∠C满足的数量关系.


    (1)将探究∠B、∠C、∠F之间的数量关系填写下表:
    (2)请选择其中一个图形进行说明理由.
    【答案】(1)见解析
    (2)见解析
    【分析】(1)利用平行线的性质即可求解.
    (2)过点C作CGAB,利用平行线的判定和性质即可求解.
    (1)
    解:∠B、∠C、∠F之间的数量关系如下表:
    (2)
    解:图(1) ∠C与∠B、∠F之间的数量关系是:∠B+∠F=∠C.
    理由:过点C作CGAB,
    ∴∠BCG=∠B,
    ∵ABEF,
    ∴CGEF,
    ∴∠GCF=∠F,
    ∴∠BCG+∠GCF=∠B+∠F,
    ∴∠B+∠F=∠BCF;
    图(2) ∠C与∠B、∠F之间的数量关系是:∠F-∠B=∠C.
    理由:过点C作CGAB,
    ∴∠BCG=∠B,
    ∵ABEF,
    ∴CGEF,
    ∴∠GCF=∠F,
    ∴∠GCF-∠BCG=∠F-∠B,
    ∴∠F-∠B=∠BCF;
    图(3) ∠C与∠B、∠F之间的数量关系是:∠B-∠F=∠C.

    理由:过点C作CGAB,
    ∴∠BCG=∠B,
    ∵ABEF,
    ∴CGEF,
    ∴∠GCF=∠F,
    ∴∠BCG-∠GCF =∠B-∠F,
    ∴∠B-∠F=∠BCF;
    图(4) ∠C与∠B、∠F之间的数量关系是:∠B+∠F+∠C=360°.

    理由:过点C作CGAB,
    ∴∠BCG+∠B=180°,
    ∵ABEF,
    ∴CGEF,
    ∴∠GCF+∠F=180°,
    ∴∠BCG+∠B+∠GCF+∠F=180°+180°,
    ∴∠B+∠F+∠BCF=360°;
    图(5) ∠C与∠B、∠F之间的数量关系是:∠B-∠F=∠C.

    理由:过点C作CGAB,
    ∴∠BCG=∠B,
    ∵ABEF,
    ∴CGEF,
    ∴∠GCF=∠F,
    ∴∠BCG-∠GCF =∠B-∠F,
    ∴∠B-∠F=∠BCF;
    图(6) ∠C与∠B、∠F之间的数量关系是:∠F-∠B=∠C.
    理由:过点C作CGAB,
    ∴∠BCG=∠B,
    ∵ABEF,
    ∴CGEF,
    ∴∠GCF=∠F,
    ∴∠GCF-∠BCG=∠F-∠B,
    ∴∠F-∠B=∠BCF;
    【点睛】本题考查平行线的判定和性质,解题的关键是学会添加常用辅助线,构造平行线解决问题.
    12.(2020·四川乐山·七年级期末)问题情境:如图 1,,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:如图 2,过 P 作,通过平行线性质,可得∠APC=50°+60°=110°
    问题迁移:
    (1)如图 3,,点 P 在射线 OM 上运动,当点 P 在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β,∠CPD、∠α、∠β之间有何数量关系?请说明理由
    (2)在(1)的条件下,如果点P在A、B两点外侧运动时, 点 P 与 点A、B、O三点不重合,请你直接写出∠CPD、 间的数量关系.
    【答案】(1)
    (2)或.
    【分析】(1)过点作 ,则可得出,然后平行线的性质分别求出把和表示出来,则利用角的和差关系,即可求出结果;
    (2)分两种情况讨论:过点P作,则可得出,然后平行线的性质分别求出把 和 表示出来,则利用角的和差关系,即可求出结果.
    【详解】(1)解:
    证明:如图,过点P作,
    ∵,,
    ∴,
    ∵,
    ∴,
    又∵,
    ∴,
    ∴;
    (2)解:当P在线段的延长线上时,
    证明:如图,过点P作,
    ∵,,
    ∴,
    ∵,
    ∴,
    又∵

    ∴;
    如图,当P在线段的延长线上时,如图,过点P作,
    ∵,,
    ∴,
    ∵,
    ∴,
    又∵ ,
    ∴,
    ∴;
    综上所述:或.
    【点睛】本题考查了平行线的性质和判定的应用,解题的关键是辅助线构造内错角及同旁内角相等.
    图形
    ∠B、∠F、∠C满足的数量关系
    图(1)
    图(2)
    图(3)
    图(4)

    图(5)
    图(6)
    图形
    ∠B、∠F、∠C满足的数量关系
    图(1)
    ∠B+∠F=∠C
    图(2)
    ∠F-∠B=∠C
    图(3)
    ∠B-∠F=∠C
    图(4)
    ∠B+∠F+∠C=360°
    图(5)
    ∠B-∠F=∠C
    图(6)
    ∠F-∠B=∠C
    相关试卷

    七年级数学下册专题03平行线中的拐点模型之牛角模型(原卷版+解析): 这是一份七年级数学下册专题03平行线中的拐点模型之牛角模型(原卷版+解析),共43页。

    人教版七年级数学下册专题03平行线中拐点问题(原卷版+解析)(重点突围): 这是一份人教版七年级数学下册专题03平行线中拐点问题(原卷版+解析)(重点突围),共37页。

    苏科版七年级数学下册专题02探索平行线的性质压轴题六种模型全攻略(原卷版+解析): 这是一份苏科版七年级数学下册专题02探索平行线的性质压轴题六种模型全攻略(原卷版+解析),共41页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        苏科版七年级数学下册专题03平行线中的拐点问题压轴题三种模型全攻略(原卷版+解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map