所属成套资源:【考前冲刺】2024年新高考数学三轮复习热点题精讲(新高考通用)
热点题爆破11 数字特征、概率计算与统计综合-【考前冲刺】2024年新高考数学考前三轮复习热点题精讲
展开
这是一份热点题爆破11 数字特征、概率计算与统计综合-【考前冲刺】2024年新高考数学考前三轮复习热点题精讲,文件包含热点题爆破11数字特征概率计算古典概率条件概率全概率贝叶斯公式与统计综合原卷版docx、热点题爆破11数字特征概率计算古典概率条件概率全概率贝叶斯公式与统计综合解析版docx等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
1、多加总结。当三年所有的数学知识点加在一起,可能会使有些基础不牢固的学生犯迷糊。
2、做题经验。哪怕同一题只改变数字,也能成为一道新的题目。
3、多刷错题。多刷错题能够进一步地扫清知识盲区,多加巩固之后自然也就掌握了知识点。
对于学生来说,三轮复习就相当于是最后的“救命稻草”,家长们同样是这样,不要老是去责怪孩子考试成绩不佳,相反,更多的来说,如果能够陪同孩子去反思成绩不佳的原因,找到问题的症结所在,更加重要。
热点题爆破11 数字特征、概率计算(古典概率、条件概率、全概率、贝叶斯公式)与统计综合
1.(2024·江苏宿迁·一模)人工智能领域让贝叶斯公式:站在了世界中心位置,AI换脸是一项深度伪造技术,某视频网站利用该技术掺入了一些“AI”视频,“AI”视频占有率为0.001.某团队决定用AI对抗AI,研究了深度鉴伪技术来甄别视频的真假.该鉴伪技术的准确率是0.98,即在该视频是伪造的情况下,它有的可能鉴定为“AI”;它的误报率是0.04,即在该视频是真实的情况下,它有的可能鉴定为“AI”.已知某个视频被鉴定为“AI”,则该视频是“AI”合成的可能性为( )
A.B.C.D.
2.(2024·黑龙江哈尔滨·一模)为了迎接2025年第九届亚冬会的召开,某班组织全班学生开展有关亚冬会知识的竞赛活动.已知该班男生35人,女生25人.根据统计分析,男生组成绩和女生组成绩的方差分别为,该班成绩的方差为,则下列结论中一定正确的是( )
A.B.
C.D.
3.(2024·河南·一模)甲、乙两人进行一场友谊比赛,赛前每人记入3分.一局比赛后,若决出胜负,则胜的一方得1分,负的一方得分;若平局,则双方各得0分.若干局比赛后,当一方累计得分为6时比赛结束且该方最终获胜.令表示在甲的累计得分为i时,最终甲获胜的概率,若在一局中甲获胜的概率为,乙获胜的概率为,则( )
A.B.C.D.
4.(2024·湖北·二模)甲袋中有20个红球.10个白球,乙袋中红球、白球各有10个,两袋中的球除了颜色有差别外,再没有其他差别.现在从两袋中各换出1个球,下列结论正确的是( )
A.2个球都是红球的概率为
B.2个球中恰有1个红球的概率为
C.不都是红球的概率为
D.都不是红球的概率为
5.(2024·山东烟台·一模)先后抛掷一枚质地均匀的骰子两次,记向上的点数分别为,设事件“为整数”,“为偶数”,“为奇数”,则( )
A.B.
C.事件与事件相互独立D.
6.(2024·广东广州·一模)甲箱中有个红球和个白球,乙箱中有个红球和个白球(两箱中的球除颜色外没有其他区别),先从甲箱中随机取出一球放入乙箱,分别用事件和表示从甲箱中取出的球是红球和白球;再从乙箱中随机取出两球,用事件表示从乙箱中取出的两球都是红球,则( )
A.B.
C.D.
7.(2024·河南南阳·一模)投壶是中国古代士大夫宴饮时做的一种投掷游戏,游戏方式是把箭向壶里投.《醉翁亭记》中的“射”指的就是“投壶”这个游戏.为弘扬传统文化,某单位开展投壶游戏,现甲、乙两人为一组玩投壶游戏,每次由其中一人投壶,规则如下:若投中,则此人继续投壶,若未投中,则换为对方投壶,无论之前投壶的情况如何,甲每次投壶的命中率均为,乙每次投壶的命中率均为,由抽签确定第1次投壶的人选,第1次投壶的人是甲、乙的概率各为.第3次投壶的人是乙的概率为 ,已知在第2次投壶的人是甲的情况下,第1次投壶的人是乙的概率为 .
8.(2024·湖南衡阳·二模)已知有两个盒子,其中盒装有3个黑球和3个白球,盒装有3个黑球和2个白球,这些球除颜色外完全相同.甲从盒、乙从盒各随机取出一个球,若2个球同色,则甲胜,并将取出的2个球全部放入盒中,若2个球异色,则乙胜,并将取出的2个球全部放入盒中.按上述方法重复操作两次后,盒中恰有7个球的概率是 .
9.(2024·重庆开州·模拟预测)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复次这样的操作,记甲口袋中黑球个数为,恰有2个黑球的概率为,恰有1个黑球的概率为,则的数学期望 .(用表示)
10.(2024·湖北武汉·模拟预测)某校为了丰富课余活动,同时训练学生的逻辑思维能力,在高中三个年级举办中国象棋盲棋比赛,经过各年级初赛,高一、高二、高三分别有3人,4人,5人进入决赛,决赛采取单循环方式,即每名队员与其他队员都要进行1场比赛(每场比赛都采取5局3胜制,初赛、决赛的赛制相同,记分方式相同),最后根据积分选出冠军,积分规则如下:比赛中以3∶0或3∶1取胜的队员积3分,失败的队员积0分;而在比赛中以3∶2取胜的队员积2分,失败的队员积1分.
(1)从进入决赛的12人中随机抽取2人进行表演赛,这2人恰好来自不同年级的概率是多少?
(2)初赛时,高三甲、乙两同学对局,设每局比赛甲取胜的概率均为,记甲以取胜的概率为,当最大时,甲处于最佳竞技状态.在决赛阶段甲、乙对局,而且甲的竞技状态最好,求甲所得积分的分布列及期望.
11.(2024·浙江宁波·二模)三个人利用手机软件依次进行拼手气抢红包活动,红包的总金额数为个单位.第一个人抢到的金额数为1到个单位且等可能(记第一个人抢完后剩余的金额数为),第二个人在剩余的个金额数中抢到1到个单位且等可能,第三个人抢到剩余的所有金额数,并且每个人抢到的金额数均为整数个单位.三个人都抢完后,获得金额数最高的人称为手气王(若有多人金额数相同且最高,则先抢到最高金额数的人称为手气王).
(1)若,则第一个人抢到的金额数可能为个单位且等可能.
(i)求第一个人抢到金额数的分布列与期望;
(ii)求第一个人获得手气王的概率;
(2)在三个人抢到的金额数为的一个排列的条件下,求第一个人获得手气王的概率.
12.(2024·黑龙江哈尔滨·一模)入冬以来,东北成为全国旅游和网络话题的“顶流”.南方的小土豆们纷纷北上体验东北最美的冬天,这个冬天火的不只是东北的美食、东北人的热情,还有东北的洗浴中心,拥挤程度堪比春运,南方游客直接拉着行李箱进入.东北某城市洗浴中心花式宠“且”,为给顾客更好的体验,推出了和两个套餐服务,顾客可自由选择和两个套餐之一,并在App平台上推出了优惠券活动,下表是该洗浴中心在App平台10天销售优惠券情况.
经计算可得:,,.
(1)因为优惠券购买火爆,App平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,现剔除第10天数据,求关于的经验回归方程(结果中的数值用分数表示);
(2)若购买优惠券的顾客选择套餐的概率为,选择套餐的概率为,并且套餐可以用一张优惠券,套餐可以用两张优惠券,记App平台累计销售优惠券为张的概率为,求;
(3)记(2)中所得概率的值构成数列.
①求的最值;
②数列收敛的定义:已知数列,若对于任意给定的正数,总存在正整数,使得当时,,(是一个确定的实数),则称数列收敛于.根据数列收敛的定义证明数列收敛.
参考公式:,.
一、单选题
1.(2024·山西晋中·模拟预测)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则下列说法错误的是( )
A.丙与丁是互斥事件B.甲与丙是互斥事件
C.甲与丁相互独立D.(乙丙)(乙)+(丙)
2.(2024·河北石家庄·二模)某市教育局为了解高三学生的学习情况,组织了一次摸底考试,共有50000名考生参加这次考试,数学成绩近似服从正态分布,其正态密度函数为且,则该市这次考试数学成绩超过110分的考生人数约为( )
A.2000B.3000C.4000D.5000
3.(2024·福建泉州·模拟预测)中心极限定理是概率论中的一个重要结论.根据该定理,若随机变量,则当且时,可以由服从正态分布的随机变量近似替代,且的期望与方差分别与的均值与方差近似相等.现投掷一枚质地均匀分布的骰子2500次,利用正态分布估算骰子向上的点数为偶数的次数少于1300的概率为( )
附:若:,则,,.
A.0.0027B.0.5C.0.8414D.0.9773
4.(2024·海南省直辖县级单位·一模)英国数学家贝叶斯在概率论研究方面成就显著,根据贝叶斯统计理论,随机事件,存在如下关系:.若某地区一种疾病的患病率是0.05,现有一种试剂可以检验被检者是否患病.已知该试剂的准确率为,即在被检验者患病的前提下用该试剂检测,有的可能呈现阳性;该试剂的误报率为,即在被检验者未患病的情况下用该试剂检测,有的可能会误报阳性.现随机抽取该地区的一个被检验者,已知检验结果呈现阳性,则此人患病的概率为( )
A.B.C.D.
5.(2024·广西贺州·一模)某电器厂购进了两批电子元件,其中第一批电子元件的使用寿命X(单位:小时)服从正态分布,且使用寿命不少于1200小时的概率为0.1,使用寿命不少于800小时的概率为0.9.第二批电子元件的使用寿命不少于900小时的概率为0.8,使用寿命不少于1000小时的概率为0.6且这两批电子元件的使用寿命互不影响.若该厂产出的某电器中同时装有这两批电子元件各一个,则在1000小时内这两个元件都能正常工作的概率为( )
A.B.C.D.
二、多选题
6.(2024·重庆·模拟预测)已知且 则下列说法正确的有( )
A.B.
C.D.
7.(2024·河北·模拟预测)质地均匀的正四面体模型四个表面分别标有四个数字,抛掷一次并记录与地面接触面上的数字,记事件“数字为2的倍数”为事件,“数字是5的倍数”为事件,“数字是7的倍数”为事件,则下列选项不正确的是( )
A.事件、、两两互斥
B.事件与事件对立
C.
D.事件、、两两独立
8.(2024·湖南·模拟预测)玻璃缸中装有2个黑球和4个白球,现从中先后无放回地取2个球.记“第一次取得黑球”为,“第一次取得白球”为,“第二次取得黑球”为,“第二次取得白球”为,则( )
A.B.
C.D.
9.(2024·江苏·一模)有n(,)个编号分别为1,2,3,…,n的盒子,1号盒子中有2个白球和1个黑球,其余盒子中均有1个白球和1个黑球.现从1号盒子任取一球放入2号盒子;再从2号盒子任取一球放入3号盒子;…;以此类推,记“从号盒子取出的球是白球”为事件(,2,3,…,n),则( )
A.B.
C.D.
10.(2024·云南红河·二模)某种高精度产品在研发后期,一企业启动产品试生产,假设试产期共有甲、乙、丙三条生产线且每天的生产数据如下表所示:
试产期每天都需对每一件产品进行检测,检测方式包括智能检测和人工检测,选择检测方式的规则如下:第一天选择智能检测,随后每天由计算机随机等可能生成数字“0”或“1”,连续生成5次,把5次的数字相加,若和小于4,则该天检测方式和前一天相同,否则选择另一种检测方式.则下列选项中正确的是( )
A.若计算机5次生成的数字之和为,则
B.设表示事件第天该企业产品检测选择的是智能检测,则
C.若每天任检测一件产品,则这件产品为次品的概率为
D.若每天任检测一件产品,检测到这件产品是次品,则该次品来自甲生产线的概率为
三、填空题
11.(2024·福建·模拟预测)某企业生产一种零部件,其质量指标介于的为优品.技术改造前,该企业生产的该种零部件质量指标服从正态分布;技术改造后,该企业生产的同种零部件质量指标服从正态分布.那么,该企业生产的这种零部件技术改造后的优品率与技术改造前的优品率之差为 .(若,则,,)
12.(2024·全国·模拟预测)为丰富老年人的精神文化生活,提高老年人的生活幸福指数,某街道举办以社区为代表队的老年门球比赛,比赛分老年男组和老年女组,男女组分别进行淘汰赛.经过多轮淘汰后,西苑社区的老年男子“龙马”队和老年女子“风采”队都进入了决赛.按照以往的比赛经验,在决赛中“龙马”队获胜的概率为,“风采”队获胜的概率为,“龙马”队和“风采”队两队中只有一支队伍获胜的概率为(“龙马”队和“风采”队的比赛互不影响),则西苑社区的“龙马”队和“风采”队同时获得冠军的概率为 .
13.(2024·全国·模拟预测)某农业种植基地在三块实验地种植同一品种的马铃薯,甲地块产出马铃薯中一级品的个数占,乙地块产出马铃薯中一级品的个数占,丙地块产出马铃薯中一级品的个数占.已知甲、乙、丙地块产出的马铃薯个数之比为,现将三个地块产出的马铃薯混放一堆,则如果取到的一个马铃薯是一级品,那么它是由甲地块产出的概率为 .
14.(2024·云南昆明·一模)如图,一个质点从原点O出发,每隔一秒随机、等可能地向左或向右移动一个单位,共移动六次.质点位于4的位置的概率为 ;在质点第一秒位于1的位置的条件下,该质点共经过两次3的位置的概率为 .
15.(2024·河南开封·二模)袋中有个红球,个黄球,个绿球.现从中任取两个球,记取出的红球数为,若取出的两个球都是红球的概率为,则 .
四、解答题
16.(2024·安徽池州·模拟预测)“十四冬”群众运动会于2024年1月13日至14日在呼和浩特市举办,有速度滑冰、越野滑雪等项目,参加的运动员是来自全国各地的滑冰与滑雪爱好者.运动会期间,运动员与观众让现场热“雪”沸腾,激发了人们对滑冰等项目的热爱,同时也推动了当地社会经济的发展.呼和浩特市某媒体为调查本市市民对“运动会”的了解情况,在15~65岁的市民中进行了一次知识问卷调查(参加者只能参加一次).从中随机抽取100人进行调查,并按年龄群体分成以下五组:,绘制得到了如图所示的频率分布直方图,把年龄在区间和内的人分别称为“青少年群体”和“中老年群体”.
(1)若“青少年群体”中有40人关注“运动会”,根据样本频率分布直方图完成下面的列联表,并根据小概率值的独立性检验,判断关注“运动会”是否与年龄样体有关;
(2)利用按比例分层抽样的方法,在样本中从关注“运动会”的“青少年群体”与“中老年群体”中随机抽取6人,再从这6人中随机选取3人进行专访.设这3人中“青少年群体”的人数为,求的分布列与数学期望.
附:,其中.
17.(2024·山西晋中·模拟预测)比亚迪,这个中国品牌的乘用车,如今已经在全球汽车品牌销量前十中占据一席之地.这一成就是中国新能源汽车行业的里程碑,标志着中国已经在全球范围内成为了新能源汽车领域的强国.现统计了自上市以来截止到2023年8月的宋plus的月销量数据.
(1)通过调查研究发现,其他新能源汽车的崛起、购置税减免政策的颁布等,影响了该款汽车的月销量,现将残差过大的数据剔除掉,得到2022年8月至2023年8月部分月份月销量y(单位:万辆)和月份编号x的成对样本数据统计.
请用样本相关系数说明y与x之间的关系可否用一元线性回归模型拟合?若能,求出y关于x的经验回归方程;若不能,请说明理由.(运算过程及结果均精确到0.01,若,则线性相关程度很高,可用一元线性回归模型拟合)
(2)为迎接2024新春佳节,某地4S店特推出盲盒抽奖营销活动中,店家将从一批汽车模型中随机抽取50个装入盲盒用于抽奖,已知抽出的50个汽车模型的外观和内饰的颜色分布如下表所示.
①从这50个模型中随机取1个,用A表示事件“取出的模型外观为红色”,用B表示事件“取出的模型内饰为米色”,求和,并判断事件A与B是否相互独立;
②活动规定:在一次抽奖中,每人可以一次性拿2个盲盒.对其中的模型给出以下假设:假设1:拿到的2个模型会出现3种结果,即外观和内饰均为同色、外观和内饰都异色以及仅外观或仅内饰同色.假设2:按结果的可能性大小,概率越小奖项越高.假设3:该抽奖活动的奖金额为一等奖3000元、二等奖2000元、三等奖1000元.请你分析奖项对应的结果,设X为奖金额,写出X的分布列并求出X的期望(精确到元).
参考公式:样本相关系数,
,.
参考数据:,.
18.(2024·广东佛山·二模)联合国将每年的4月20日定为“联合国中文日”,以纪念“中华文字始祖”仓颉[jié]造字的贡献,促进联合国六种官方语言平等使用,为宣传“联合国中文日”,某大学面向在校留学生举办中文知识竞赛,竞赛分为“个人赛”和“对抗赛”,竞赛规则如下:
①个人赛规则:每位留学生需要从“拼音类”、“成语类”、“文化类”三类问题中随机选1道试题作答,其中“拼音类”有4道,“成语类”有6道,“文化类”有8道,若答对将获得一份奖品.
②对抗赛规则:两位留学生进行答题比赛,每轮只有1道题目,比赛时两位参赛者同时回答这一个问题,若一人答对且另一人答错,则答对者获得1分,答错者得分;若两人都答对或都答错,则两人均得0分,对抗赛共设3轮,累计得分为正者将获得一份奖品,且两位参赛者答对与否互不影响,每次答题的结果也互不影响.
(1)留学生甲参加个人赛,根据以往答题经验,留学生甲答对“拼音类”、“成语类”“文化类”的概率分别为,,,求留学生甲答对了所选试题的概率.
(2)留学生乙和留学生丙参加对抗赛,根据以往答题经验,每道题留学生乙和留学生丙答对的概率分别为,,求留学生乙获得奖品的概率.
19.(2024·黑龙江哈尔滨·一模)据统计,2024年元旦假期,哈尔滨市累计接待游客304.79万人次,实现旅游总收入59.14亿元,游客接待量与旅游总收入达到历史峰值.现对某一时间段冰雪大世界的部分游客做问卷调查,其中的游客计划只游览冰雪大世界,另外的游客计划既游览冰雪大世界又参观群力音乐公园大雪人.每位游客若只游览冰雪大世界,则得到1份文旅纪念品;若既游览冰雪大世界又参观群力音乐公园大雪人,则获得2份文旅纪念品.假设每位来冰雪大世界景区游览的游客与是否参观群力音乐公园大雪人是相互独立的,用频率估计概率.
(1)从冰雪大世界的游客中随机抽取3人,记这3人获得文旅纪念品的总个数为,求的分布列及数学期望;
(2)记个游客得到文旅纪念品的总个数恰为个的概率为,求的前项和;
(3)从冰雪大世界的游客中随机抽取100人,这些游客得到纪念品的总个数恰为个的概率为,当取最大值时,求的值.
20.(2024·辽宁大连·一模)一个不透明的盒子中有质地、大小均相同的7个小球,其中4个白球,3个黑球,现采取不放回的方式每次从盒中随机抽取一个小球,当盒中只剩一种颜色时,停止取球.
(1)求停止取球时盒中恰好剩3个白球的概率;
(2)停止取球时,记总的抽取次数为,求的分布列与数学期望:
(3)现对方案进行调整:将这7个球分装在甲乙两个盒子中,甲盒装3个小球,其中2个白球,1个黑球:乙盒装4个小球,其中2个白球,2个黑球.采取不放回的方式先从甲盒中每次随机抽取一个小球,当盒中只剩一种颜色时,用同样的方式从乙盒中抽取,直到乙盒中所剩小球颜色和甲盒剩余小球颜色相同,或者乙盒小球全部取出后停止.记这种方案的总抽取次数为Y,求Y的数学期望,并从实际意义解释X与Y的数学期望的大小关系.
日期
1
2
3
4
5
6
7
8
9
10
销售量(千张)
1.9
1.98
2.2
2.36
2.43
2.59
2.68
2.76
2.7
0.4
生产线
次品率
产量(件/天)
甲
500
乙
700
丙
800
年龄群体
运动会
合计
关注
不关注
青少年群体
40
中老年群体
合计
60
40
100
0.05
0.01
0.001
3.841
6.635
10.828
月份
2022年8月
2022年9月
2022年12月
2023年1月
2023年2月
2023年3月
2023年4月
2023年6月
2023年7月
2023年8月
月份编号
1
2
3
4
5
6
7
8
9
10
月销量(单位:万辆)
4.25
4.59
4.99
3.56
3.72
3.01
2.46
2.72
3.02
3.28
红色外观
蓝色外观
棕色内饰
20
10
米色内饰
15
5
相关试卷
这是一份热点题爆破09 数列-【考前冲刺】2024年新高考数学考前三轮复习热点题精讲(新高考通用),文件包含热点题爆破09数列原卷版docx、热点题爆破09数列解析版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
这是一份热点题爆破08 解三角形-【考前冲刺】2024年新高考数学考前三轮复习热点题精讲(新高考通用),文件包含热点题爆破08解三角形原卷版docx、热点题爆破08解三角形解析版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。
这是一份热点题爆破07 三角函数与三角恒等变换-【考前冲刺】2024年新高考数学考前三轮复习热点题精讲,文件包含热点题爆破07三角函数与三角恒等变换原卷版docx、热点题爆破07三角函数与三角恒等变换解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。