江苏省常州市第一中学2023-2024学年高二下学期5月阶段质量调研数学试题
展开一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填涂在答题卡相应位置上.
1. 已知直线的方向向量为,平面的法向量为,若,则实数的值为( )
A. B. C. D.
2. 下列求导数的运算中错误的是( )
A. B.
C. D.
3.已知随机变量,,且,,则( )
A.B.C.D.
4. 已知四面体中,为中点,若,则( )
A. 3 B. 2 C. D.
5. 若曲线在处的切线与曲线也相切,则的值为( )
A. B. C. 1D.
6.学生甲想参加某高中校蓝球投篮特长生考试,测试规则如下:①投篮分为两轮,每轮均有两次机会,第一轮在罚球线处,第二轮在三分线处;②若他在罚球线处投进第一球,则直接进入下一轮,若第一次没有投进可以进行第二次投篮,投进则进入下一轮,否则不预录取;③若他在三分线处投进第一球,则直接录取,若第一次没有投进可以进行第二次投篮,投进则录取,否则不预录取。已知学生甲在罚球线处投篮命中率为,在三分线处投篮命中率为,假设学生甲每次投进与否互不影响。则学生甲共投篮三次就结束考试得概率为( )
A. B. C. D.
7. 随机变量的分布列如下所示则的最大值为( )
A. B. C. D.
8. 设函数,,若存在,,使得,则的最小值为( )
A. B. 1C. 2D.
二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分,请把答案填涂在答题卡相应位置上.
9. 已知事件A,B满足且,则一定有( )
A. B. 相互独立 C. D.
10.函数有两个极值点则下列结论正确的是( )
A .若 ,则 有 3 个零点
B.过上任一点至少可作两条直线与 相切
C .函数的增区间为
D .存在,使得
11.有款小游戏,规则如下:一小球从数轴上的原点0出发,通过扔骰子决定向左或者向右移动,扔出骰子,若是奇数点向上,则向左移动一个单位,若是偶数点向上,则向右移动一个单位,扔出次骰子后,小球所在位置对应的数为随机变量X,则下列结论正确的是
A.第二次扔骰子后,小球位于原点0的概率为 B.
C.第一次扔完骰子小球位于且第五次位于1的概率 D.
三、填空题:本题共3小题,每小题5分,共15分.
12.已知函数,若在R上单调递增,则实数的取值范围是
一个袋子中有100个大小相同的球,其中有40个黄球,60个白球,采取不放回摸球,从中随机摸出22个作为样本,用表示样本中黄球的个数,当最大时,则此时=
14.在侧棱长为的正三棱锥中,点为线段上一点,且,点M为平面内的动点,且满足,记直线与直线的所成角的余弦值的取值范围为_____________.
四、解答题:本题共5小题,共77分.解答过程写出文字说明、证明过程或者演算过程.
15. 如图,在几何体中,平面,平面,,,.
(1)求C到平面的距离;(2)求二面角的大小.
16. 会员足够多的某知名咖啡店,男会员占60%,女会员占40%.现对会员进行服务质量满意度调查.根据调查结果得知,男会员对服务质量满意的概率为,女会员对服务质量满意的概率为.
(1)随机选取一名会员,求其对服务质量满意的概率;
(2)从会员中随机抽取3人,记抽取的3人中,对服务质量满意的人数为,求的分布和数学期望.
17. 已知函数的定义域为,其中为自然对数底数
(1)讨论函数的单调性;
(2)若对任意,恒成立,求实数的取值范围.
18.如图,四棱柱中,底面是平行四边形,,,,,为的中点.
(1)求证:;
(2)若,二面角的大小为,求直线与平面所成角的正弦值.
19. 2019年7月1日至3日,世界新能源汽车大会在海南博鳌召开,大会着眼于全球汽车产业的转型升级和生态环境的持续改善.某汽车公司顺应时代潮流,最新研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程(理论上是指新能源汽车所装载的燃料或电池所能够提供给车行驶的最远里程)的测试.现对测试数据进行分析,得到如下的频率分布直方图:
(1)估计这100辆汽车的单次最大续航里程的平均值(同一组中的数据用该组区间的中点值代表).
(2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程近似地服从正态分布,经计算第(1)问中样本标准差的近似值为50.用样本平均数作为的近似值,用样本标准差作为的估计值,现任取一辆汽车,求它的单次最大续航里程恰在250千米到400千米之间的概率.
参考数据:若随机变量ξ服从正态分布,则,,.
(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券.已知硬币出现正、反面的概率都是,方格图上标有第0格、第1格、第2格、…、第50格.遥控车开始在第0格,客户每掷一次硬币,遥控车车向前移动一次,若掷出正面,遥控车向前移动一格(从到),若掷出反面,遥控车向前移动两格(从到),直到遥控车移到第49格(胜利大本营)或第50格(失败大本营)时,游戏结束,设遥控车移到第n格的概率为,试说明是等比数列,并解释此方案能否成功吸引顾客购买该款新能源汽车.
1. D
【解析】
【分析】根据给定条件,可得,再利用空间向量垂直的坐标表示求解作答.
【详解】因为,则,而,,
因此,解得.
故选:D
2. B
【解析】
【分析】根据指数函数求导公式判断A,根据复合函数和对数函数求导公式判断B,根据幂函数求导公式判断C,根据三角函数求导公式结合乘法导数公式判断D.
【详解】对于A,,A正确,
对于B,设,,
函数关于变量的导函数为,
函数关于变量的导函数为
所以,B错误,
对于C,,C正确,
对于D,,
所以,D正确,
故选:B.
3.C
4. D
【解析】
【分析】根据空间向量的运算法则,化简得到,结合题意,列出方程,即可求解.
【详解】根据题意,利用空间向量的运算法则,可得:,
因为,所以,解得.
故选:D.
5. B
【解析】
【分析】根据题意,求得在处的切线为,设直线与曲线相切的切点为,求得,又切点在曲线和切线上,代入即可求解.
【详解】对曲线,在切点处切线的斜率,
所以切线方程为:,
对于曲线,设切点,则在点处切线的斜率,
依题意,即,
又点切点在曲线和切线上,即,
所以,
故选:B.
6.B
7. D
【解析】
【分析】由分布列的性质可得的关系,再由期望公式求,由方差公式求,利用导数求的最大值.
【详解】由题可知,,,
所以,,
,
,
则,
令,
则,
则在上单调递增,在上单调递减,
所以,
所以的最大值为.
故选:D.
8. B
【解析】
【分析】根据题意,由条件可得,即可得到,构造函数,求导得其最值,即可得到结果.
【详解】由题意可得,即,
所以,
又,所以在上单调递增,
即,所以,
且,
令,,
则,其中,
令,则,
当时,,则单调递增,
当时,,则单调递减,
所以当时,有极大值,即最大值,
所以,,
所以.
二、多项选择题
9. ACD
10.AD
11.ABD
【分析】计算出小球每次向左向右的概率后,结合概率公式与期望算法逐个计算即可得.
【解答】解:扔出骰子,奇数点向上的概率为,偶数点向上的概率亦为;
对于选项:若两次运动后,小球位于原点,小球在两次运动之中一定一次向左一次向右,
故其概率为,故选项正确;
对于选项,设这个随机变量为,则的可能取值为、、1、3,
其中,,
故其期望
,故选项错误;
对于选项:第一次扔完骰子小球位于,即第一次向右移动,且第五次位于1,
则后续中小球向右3次,向左1次,故其概率为,故选项错误;
对于选项:第五次扔完骰子,小球位于1,即两次向左,三次向右,故其概率,
小球位于3,则四次向右,一次向左,故其概率,有,故选项正确.
故选:.
填空题
12..
详解】由已知可得,.
因为在R上单调递增,所以恒成立.
因为,
所以恒成立,
所以,,解得.
17.8
15.
【详解】因为两两垂直,且,所以由勾股定理可知,
所以三棱锥为正三棱锥,记在底面内的投影为,
所以,
因为,所以,所以,
因为,所以,所以的轨迹是以为圆心半径为的圆,
取中点,连接,可知经过点,建立如下图所示的空间直角坐标系:
设,,,
所以,
所以,
设直线与直线的所成角为.
所以
故答案为:.
四、解答题
15.
(1)解:以为正交基底,建立空间直角坐标系,如图所示。
,
设与所成角为,,
………………4分
设平面的法向量
所以,即解得,取
设平面的法向量
所以,即解得,取
设平面与平面所成的二面角的平面角为
,又,所以……………12分
16. (1); (2)分布列见解析,
【解析】
【分析】(1)利用全概率公式计算即可;
(2)根据二项分布的分布列及期望公式计算即可.
【小问1详解】
记事件:会员为男会员,:会员为女会员,事件:对服务质量满意,
则由题可知,,,,
所以;
【小问2详解】
由题设及(1)知:服从分布,
,
,
所以:.
17. 【答案】(1)见解析 (2)
【解析】
【分析】(1)求导可得,分和两种情况,利用导数判断原函数单调性;
(2)根据恒成立问题,结合(1)中的单调性以及定点分析求解.
【小问1详解】
由题意可得:,
因为,则,
①当时,则在内恒成立,
可知,则在上单调递增;
②当时,令,解得;令,解得;
则在上单调递减,在上单调递增.
综上所述:当时,在上单调递增;
当时,在上单调递减,在上单调递增.
【小问2详解】
由(1)可知:当时,在上单调递增,,符合要求;
当时,在上单调递减,则,不合题意;
综上所述:实数的取值范围为.
18.
(1)证明:在中,,
由余弦定理得,,
所以,所以
又因为
所以,又
所以 ………4分
(2)因为
所以
因为,所以是二面角的平面角,
所以,在
所以(也可建系求得) ………6分
取的中点,连接,则,
以为正交基底,建立如图所示的空间直角坐标系
则,,,
因为,,
所以 ………8分
所以,设平面的法向量为,则,取 ………10分
设直线与平面所成角为,则
所以直线与平面所成角的正弦值为.……………………12分
19.
【答案】(1)(千米)(2)(3)说明见解析,此方案能够成功吸引顾客购买该款新能源汽车
【解析】
【分析】(1)根据频率分步直方图中的平均数计算公式即可求解,
(2)根据正态分布的对称性即可求解,
(3)根据规则可得,即可根据等比数列的定义求证,进而根据迭代法求解,即可求解成功和失败的概率,进而可求解.
【小问1详解】
(千米).
【小问2详解】
由,.
.
【小问3详解】
遥控车开始在第0 格为必然事件,.第一次掷硬币出现正面,遥控车移到第一格,其概率为,即.遥控车移到第格的情况是下面两种,而且只有两种:
①遥控车先到第格,又掷出反面,其概率为.
②遥控车先到第格,又掷出正面,其概率为.
.
.
数列是等比数列,首项为,公比为的等比数列.
,,,,.
,1,,.
获胜的概率,
失败的概率.
.
获胜的概率大.
此方案能成功吸引顾客购买该款新能源汽车.
0
1
2
3
江苏省常州市武进区2023-2024学年高二下学期期中质量调研数学试题(无答案): 这是一份江苏省常州市武进区2023-2024学年高二下学期期中质量调研数学试题(无答案),共4页。
2023-2024学年江苏省常州市第一中学高二上学期12月质量调研数学试题含答案: 这是一份2023-2024学年江苏省常州市第一中学高二上学期12月质量调研数学试题含答案,共20页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年江苏省常州市金坛区金沙高级中学高一下学期阶段性质量调研数学试题含答案: 这是一份2022-2023学年江苏省常州市金坛区金沙高级中学高一下学期阶段性质量调研数学试题含答案,共15页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。