§3.4 函数中的构造问题 课件-2025高考数学一轮复习
展开函数中的构造问题是高考考查的一个热点内容,经常以客观题出现,同构法构造函数也在解答题中出现,通过已知等式或不等式的结构特征,构造新函数,解决比较大小、解不等式、恒成立等问题.
题型一 利用f(x)与x构造函数
例1 (2023·信阳统考)已知f(x)是定义在R上的偶函数,当x>0时,xf′(x)-f(x)<0,且f(-2)=0,则不等式 >0的解集是A.(-2,0)∪(0,2)B.(-∞,-2)∪(2,+∞)C.(-2,0)∪(2,+∞)D.(-∞,-2)∪(0,2)
因为f(x)是定义在R上的偶函数,所以f(-x)=f(x).
所以g(x)为奇函数,所以g(-2)=-g(2).
因为f(-2)=0,所以g(-2)=g(2)=0.
所以g(x)在(0,+∞)上单调递减,
因为g(x)为奇函数,图象关于原点对称,
所以g(x)在(-∞,0)上单调递减,
(1)出现nf(x)+xf′(x)形式,构造函数F(x)=xnf(x).
跟踪训练1 (多选)(2023·郴州统考)已知函数f(x)是定义在R上的奇函数,当x>0时,xf′(x)+2f(x)>0恒成立,则A.f(1)<4f(2) B.f(-1)<4f(-2)C.16f(4)<9f(3) D.4f(-2)>9f(-3)
令g(x)=x2f(x),∵当x>0时,xf′(x)+2f(x)>0,∴当x>0时,g′(x)=2xf(x)+x2f′(x)=x[xf′(x)+2f(x)]>0,∴g(x)=x2f(x)在(0,+∞)上单调递增.又f(x)为定义在R上的奇函数,y=x2为定义在R上的偶函数,
∴g(x)=x2f(x)为定义在R上的奇函数.∴g(x)是增函数.由g(2)>g(1),可得4f(2)>f(1),故A正确;由g(-1)>g(-2),可得f(-1)>4f(-2),故B错误;由g(4)>g(3),可得16f(4)>9f(3),故C错误;由g(-2)>g(-3),可得4f(-2)>9f(-3),故D正确.
题型二 利用f(x)与ex构造函数
例2 (2024·吉安模拟)已知定义在R上的函数f(x)满足f(x)
因此函数g(x)是增函数,
整理得f(2 023)-ef(2 022)>2(e-1),故B正确.
(1)出现f′(x)+nf(x)形式,构造函数F(x)=enxf(x).
跟踪训练2 (2023·南昌模拟)已知定义在R上的函数f(x)满足f(x)+f′(x)>0,且有f(3)=3,则f(x)>3e3-x的解集为___________.
设F(x)=f(x)·ex,则F′(x)=f′(x)·ex+f(x)·ex=ex[f(x)+f′(x)]>0,∴F(x)是增函数.又f(3)=3,则F(3)=f(3)·e3=3e3.∵f(x)>3e3-x等价于f(x)·ex>3e3,即F(x)>F(3),∴x>3,即所求不等式的解集为(3,+∞).
题型三 利用f(x)与sin x,cs x构造函数
∵当x∈(0,π)时,f′(x)sin x-f(x)cs x<0,∴在(0,π)上,g′(x)<0,∴函数g(x)在(0,π)上单调递减.∵y=f(x),y=sin x是奇函数,∴函数g(x)是偶函数,
∴函数g(x)在(-π,0)上单调递增.
当x∈(-π,0)时,sin x<0,
函数f(x)与sin x,cs x相结合构造可导函数的几种常见形式F(x)=f(x)sin x,F′(x)=f′(x)sin x+f(x)cs x;
F(x)=f(x)cs x,
F′(x)=f′(x)cs x-f(x)sin x;
设φ(x)=f(x)sin x,则φ′(x)=f′(x)sin x+f(x)cs x,∴当x∈(0,+∞)时,φ′(x)<0,即φ(x)在(0,+∞)上单调递减,又f(x)为奇函数,∴φ(x)为偶函数,
一、单项选择题1.(2023·济南模拟)已知f(x)是定义在R上的偶函数,f′(x)是f(x)的导函数,当x≥0时,f′(x)-2x>0,且f(1)=3,则f(x)>x2+2的解集是A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(0,1)D.(-∞,-1)∪(0,1)
令g(x)=f(x)-x2,因为f(x)是偶函数,则g(-x)=f(-x)-(-x)2=g(x),所以函数g(x)也是偶函数,g′(x)=f′(x)-2x,因为当x≥0时,g′(x)=f′(x)-2x>0,所以函数g(x)在(0,+∞)上单调递增,不等式f(x)>x2+2即为不等式g(x)>2,
由f(1)=3,得g(1)=2,所以g(x)>g(1),所以|x|>1,解得x>1或x<-1,所以f(x)>x2+2的解集是(-∞,-1)∪(1,+∞).
A.α3>β3 B.α+β>0C.|α|<|β| D.|α|>|β|
则f(-x)=-xsin(-x)=xsin x=f(x),则f(x)为偶函数,又f′(x)=sin x+xcs x,
又αsin α-βsin β>0,即f(α)>f( β),所以|α|>|β|.
3.定义在R上的函数f(x)的导函数为f′(x),若对任意实数x,有f(x)>f′(x),且f(x)+2 024为奇函数,则不等式f(x)+2 024ex<0的解集是A.(-∞,0) B.(-∞,ln 2 024)C.(0,+∞) D.(2 024,+∞)
因为f(x)>f′(x),所以g′(x)<0,所以g(x)为定义在R上的减函数,因为f(x)+2 024为奇函数,所以f(0)+2 024=0,f(0)=-2 024,
f(x)+2 024ex<0,
即g(x)
则g′(x)=f′(x)cs x-f(x)sin x>0,
5.(2024·惠州模拟)已知定义在R上的函数f(x)的导函数为f′(x),且3f(x)+f′(x)<0,f(ln 2)=1,则不等式e3xf(x)>8的解集为A.(-∞,2) B.(-∞,ln 2)C.(ln 2,+∞) D.(2,+∞)
令g(x)=e3xf(x),函数g(x)的定义域为R,因为3f(x)+f′(x)<0,所以g′(x)=[e3xf(x)]′=e3x[3f(x)+f′(x)]<0,故g(x)为减函数,又因为f(ln 2)=1,所以g(ln 2)=e3ln 2f(ln 2)=8,所以不等式e3xf(x)>8可化为g(x)>g(ln 2),所以x
6.已知0
由0
所以cs y>cs(π-x)=-cs x,所以cs x+cs y>0.
二、多项选择题7.(2023·福州联考)定义在(0,+∞)上的函数f(x)满足xf′(x)-1>0,则下列结论正确的是A.f(2)-ln 2>f(1) B.f(4)-f(2)>ln 2C.f(2)+ln 2>f(e)+1 D.f(e2)-f(e)>1
构造函数g(x)=f(x)-ln x,x>0,
因为xf′(x)-1>0,所以g′(x)>0,故g(x)是增函数,由g(2)>g(1)得,f(2)-ln 2>f(1)-ln 1,即f(2)-ln 2>f(1),故A正确;由g(4)>g(2)得,f(4)-ln 4>f(2)-ln 2,
即f(4)-f(2)>ln 4-ln 2=ln 2,故B正确;由g(e)>g(2)得,f(e)-ln e>f(2)-ln 2,即f(e)+ln 2>f(2)+1,故C错误;由g(e2)>g(e)得,f(e2)-ln e2>f(e)-ln e,即f(e2)-2>f(e)-1,即f(e2)-f(e)>1,故D正确.
8.(2023·保定模拟)已知函数f(x)的定义域为(0,+∞),导函数为f′(x),满足xf′(x)-f(x)=(x-1)ex(e为自然对数的底数),且f(1)=0,则A.3f(2)>2f(3)B.f(1)
即f(x)=ex-ex,x>0,令g′(x)>0,则x>1,
故g(x)在(1,+∞)上单调递增,
则3f(2)<2f(3),故A错误;令f′(x)=ex-e>0,得x>1,令f′(x)=ex-e<0,得0
令g(x)=f(x)-x2-3x,则g′(x)=f′(x)-2x-3<0在R上恒成立,所以g(x)是减函数.又f(2x-3)<2x(2x-3),即f(2x-3)-(2x-3)2-3(2x-3)<0,又f(1)-12-3×1=0,即g(2x-3)
∵f(x)<f′(x)tan x,
专题一 微重点1 导数中函数的构造问题--高三高考数学复习-PPT: 这是一份专题一 微重点1 导数中函数的构造问题--高三高考数学复习-PPT,共60页。PPT课件主要包含了考点一,考点二,导数型构造函数,构造函数比较大小,专题强化练,综上bac,bac等内容,欢迎下载使用。
新高考数学一轮复习讲练测课件第3章§3.4函数中的构造问题[培优课] (含解析): 这是一份新高考数学一轮复习讲练测课件第3章§3.4函数中的构造问题[培优课] (含解析),共54页。PPT课件主要包含了题型一,导数型构造函数,思维升华,3+∞,题型二,同构法构造函数,∵αβ均为锐角,课时精练,2+∞等内容,欢迎下载使用。
2024届高考数学一轮复习(新教材人教A版强基版)第三章一元函数的导数及其应用3.4函数中的构造问题课件: 这是一份2024届高考数学一轮复习(新教材人教A版强基版)第三章一元函数的导数及其应用3.4函数中的构造问题课件,共54页。PPT课件主要包含了题型一,导数型构造函数,思维升华,3+∞,题型二,同构法构造函数,∵αβ均为锐角,课时精练,-∞ln2等内容,欢迎下载使用。