终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    【期中讲练测】沪教版八年级下册数学专题03平行四边形 考点专练.zip

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      【期中讲练测】沪教版八年级下册数学 专题03平行四边形 考点专练 原卷版.docx
    • 解析
      【期中讲练测】沪教版八年级下册数学 专题03平行四边形 考点专练 解析版.docx
    【期中讲练测】沪教版八年级下册数学 专题03平行四边形 考点专练 原卷版第1页
    【期中讲练测】沪教版八年级下册数学 专题03平行四边形 考点专练 原卷版第2页
    【期中讲练测】沪教版八年级下册数学 专题03平行四边形 考点专练 原卷版第3页
    【期中讲练测】沪教版八年级下册数学 专题03平行四边形 考点专练 解析版第1页
    【期中讲练测】沪教版八年级下册数学 专题03平行四边形 考点专练 解析版第2页
    【期中讲练测】沪教版八年级下册数学 专题03平行四边形 考点专练 解析版第3页
    还剩20页未读, 继续阅读
    下载需要25学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【期中讲练测】沪教版八年级下册数学专题03平行四边形 考点专练.zip

    展开

    这是一份【期中讲练测】沪教版八年级下册数学专题03平行四边形 考点专练.zip,文件包含期中讲练测沪教版八年级下册数学专题03平行四边形考点专练原卷版docx、期中讲练测沪教版八年级下册数学专题03平行四边形考点专练解析版docx等2份试卷配套教学资源,其中试卷共100页, 欢迎下载使用。
    题型一:中点四边形 题型二:正方形中的十字架模型
    题型三:四边形中的对角互补模型 题型四:与正方形有关三垂线
    题型五:正方形与45°角的基本图
    题型一:中点四边形
    “中点四边形”,也叫瓦里尼翁平行四边形,是顺次连接四边形各边中点而组成的四边形,是四边形的内接四边形的一种特殊情况,一般有以下三种形态:
    (原四边形ABCD依次是:凸四边形,凹四边形,折四边形)
    (一)中点四边形一定是平行四边形
    当原四边形对角线相等时,其中点四边形为菱形
    当原四边形对角线垂直时,其中点四边形为矩形
    当原四边形对角线垂直且相等时,其中点四边形为正方形
    (二)中点四边形的周长等于原四边形对角线之和
    (三)中点四边形的面积等于原四边形面积的二分之一
    一、单选题
    1.(2020·上海徐汇·二模)下列命题中,假命题是( )
    A.顺次联结任意四边形四边中点所得的四边形是平行四边形
    B.顺次联结对角线相等的四边形四边中点所得的四边形是菱形
    C.顺次联结对角线互相垂直的四边形四边中点所得的四边形是矩形
    D.顺次联结两组邻边互相垂直的四边形四边中点所得的四边形是矩形
    二、填空题
    2.(21-22九年级上·陕西西安·阶段练习)如图,连接四边形ABCD各边的中点,得到四边形EFGH,还要添加 ,才能保证四边形EFGH是正方形.
    3.(20-21八年级下·山东德州·期末)如图,连接四边形各边中点,得到四边形,还要添加 条件,才能保证四边形是矩形.
    三、解答题
    4.(20-21八年级下·河北石家庄·期中)四边形ABCD中,点E、F、G、H分别为AB、BC、CD、DA边的中点,顺次连接各边中点得到的新四边形EFGH称为中点四边形.
    (1)我们知道:无论四边形ABCD怎样变化,它的中点四边形EFGH都是平行四边形.特殊的:
    ①当对角线时,四边形ABCD的中点四边形为__________形;
    ②当对角线时,四边形ABCD的中点四边形是__________形.
    (2)如图:四边形ABCD中,已知,且,请利用(1)中的结论,判断四边形ABCD的中点四边形EFGH的形状并进行证明.
    5.(20-21八年级下·广西桂林·期末)如图,四边形ABCD的四边中点分别为E、F、G、H,顺次连接E、F、G、H.
    (1)判断四边形EFGH形状,并说明理由;
    (2)若AC=BD,判断四边形EFGH形状,并说明理由.
    题型二:正方形中的十字架模型
    一、填空题
    1.(23-24九年级上·山西太原·期中)如图,在正方形中,,点E是边上一点,且,连接,点F是边上一点,过点F作交于点G,连接,,,则四边形的面积为 .

    二、解答题
    2.(21-22九年级上·黑龙江哈尔滨·阶段练习)正方形ABCD中,点E、F在BC、CD上,且BE=CF,AE与BF交于点G.
    (1)如图1,求证AE⊥BF;
    (2)如图2,在GF上截取GM=GB,∠MAD的平分线交CD于点H,交BF于点N,连接CN,求证:AN+CN=BN;
    3.(20-21八年级下·江苏泰州·期末)如图,正方形ABCD边长为4,点G在边AD上(不与点A、D重合),BG的垂直平分线分别交AB、CD于E、F两点,连接EG.
    (1)当AG=1时,求EG的长;
    (2)当AG的值等于 时,BE=8-2DF;
    (3)过G点作GM⊥EG交CD于M
    ①求证:GB平分∠AGM;
    ②设AG=x,CM=y,试说明的值为定值.
    4.(20-21八年级下·云南曲靖·期末)如图1,在正方形中,为上一点,连接,过点作于点,交于点.
    (1)求证:;
    (2)如图2,连接、,点、、、分别是、、、的中点,试判断四边形的形状,并说明理由;
    (3)如图3,点、分别在正方形的边、上,把正方形沿直线翻折,使得的对应边恰好经过点,过点作于点,若,正方形的边长为3,求线段的长.
    5.(2024·河南·一模)综合与实践
    完成任务:
    (1)填空:上述材料中的依据是________(填“”或“”或“”或“”)
    【发现问题】
    同学们通过交流后发现,已知可证得,已知同样可证得,为了验证这个结论是否具有一般性,又进行了如下探究.

    【迁移探究】
    在正方形中,点E在上,点M,N分别在上,连接交于点P.
    甲小组同学根据画出图形如图2所示,乙小组同学根据画出图形如图3所示.
    甲小组同学发现已知仍能证明,乙小组同学发现已知无法证明一定成立.
    (2)①在图2中,已知,求证:;
    ②在图3中,若,则的度数为________.
    【拓展应用】
    (3)如图4,在正方形中,,点E在边上,点M在边上,且,点F,N分别在直线上,若,当直线与直线所夹较小角的度数为时,请直接写出的长.
    题型三:四边形中的对角互补模型
    模型1:全等形一-90°对角互补模型
    模型2:全等形--120°对角互补模型
    模型 3:全等形一一任意角对角互补模型
    模型4:相似形一-90°对角互补模型(后面会学到)
    1.(20-21八年级下·福建三明·期中)感知:如图①,平分,,.判断与的大小关系并证明.
    探究:如图②,平分,,,与的大小关系变吗?请说明理由.
    应用:如图③,四边形中,,,,则与差是多少(用含的代数式表示)
    2.初步探究:如图1,在四边形中,,,E,F分别是,上的点,且.探究图中、、之间的数量关系,小王同学探究此问题的方法是:延长到点G,使,连接,先证明,再证明,可得出结论是 .
    灵活运用:如图2,在四边形中,,,E,F分别是、上的点,且,上述结论是否仍然成立,并说明理由.
    拓展延伸:如图3,在四边形中,,,若点E在的延长线上,点F在的延长线上,仍然满足,请直接写出与的数量关系.

    3.(20-21九年级下·辽宁大连·期中)如图1,正方形中,是对角线,点在上,点在上,连接(与不垂直),点是线段的中点,过点作交线段于点.

    (1)猜想与的数量关系,并证明;
    (2)探索,,之间的数量关系,并证明;
    (3)如图2,若点在的延长线上,点在的延长线上,其他条件不变,请直接写出,,之间的数量关系.
    4.(21-22八年级上·陕西西安·开学考试)问题探究
    ((1)如图①,已知∠A=45°,∠ABC=30°,∠ADC=40°,则∠BCD的大小为___________;
    (2)如图②,在四边形ABCD中,AB=BC,∠ABC=∠ADC=90°,对角线BD=6.求四边形ABCD的面积;小明这样来计算.延长DC,使得CE=AD,连接BE,通过证明△ABD≌△CBE,从而可以计算四边形ABCD的面积.请你将小明的方法完善.并计算四边形ABCD的面积;
    问题解决
    (3)如图③,四边形ABCD是正在建设的城市花园,其中AB=BC,∠ABC=60°,∠ADC=30°,DC=40米,AD=30米.请计算出对角线BD的长度.
    5.(21-22九年级上·湖北武汉·阶段练习)四边形是由等边和顶角为的等腰排成,将一个角顶点放在处,将角绕点旋转,该交两边分别交直线、于、,交直线于、两点.
    (1)当、都在线段上时(如图1),请证明:;
    (2)当点在边的延长线上时(如图2),请你写出线段,和之间的数量关系,并证明你的结论;
    (3)在(1)的条件下,若,,请直接写出的长为 .
    6.【课题研究】旋转图形中对应线段所在直线的夹角(小于等于90°的角)与旋转角的关系.
    【问题初探】线段AB绕点O顺时针旋转得到线段CD,其中点A与点C对应,点B与点D对应,旋转角的度数为α,且0°<α<180°.
    (1)如图①,当α=60°时,线段AB、CD所在直线夹角(锐角)为 ;
    (2)如图②,当90°<α<180°时,直线AB与直线CD所夹锐角与旋转角α存在怎样的数量关系?请说明理由;
    【形成结论】旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角 .
    【运用拓广】运用所形成的结论解决问题:
    (3)如图③,四边形ABCD中,∠ABC=60°,∠ADC=30°,AB=BC,CD=3,BD=,求AD的长.

    题型四:与正方形有关三垂线

    一、单选题
    1.如图,四边形AFDC是正方形,和都是直角,且E,A,B三点共线,,则图中阴影部分的面积是( )
    A.12B.10C.8D.6
    二、填空题
    2.(2023春·八年级课时练习)如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为__ .
    三、解答题
    3.(2022春·广东东莞·八年级塘厦初中校考期中)四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.
    (1)如图,求证:矩形DEFG是正方形;
    (2)若AB=4,CE=2,求CG的长度;
    (3)当线段DE与正方形ABCD的某条边的夹角是40°时,直接写出∠EFC的度数.
    4.(2021春·山西·八年级统考期末)综合与实践:如图1,在正方形中,连接对角线,点O是的中点,点E是线段上任意一点(不与点A,O重合),连接,.过点E作交直线于点F.
    (1)试猜想线段与的数量关系,并说明理由;
    (2)试猜想线段之间的数量关系,并说明理由;
    (3)如图2,当E在线段上时(不与点C,O重合),交延长线于点F,保持其余条件不变,直接写出线段之间的数量关系.
    5.(2022春·新疆省直辖县级单位·八年级校联考期末)如图,点是正方形的边上的任意一点(不与、重合),与正方形的外角的角平分线交于点.
    (1)求证:.
    (2)将图放在平面直角坐标系中,如图,连、,与交于点,若正方形的边长为,则四边形的面积是否随点位置的变化而变化?若不变,请求出四边形的面积.
    (3)在的(2)条件下,若,求四边形的面积.
    题型五:正方形与45°角的基本图

    1.如图所示,正方形中,点E,F分别为BC,CD上一点,点M为EF上一点,,M关于直线AF对称.
    (1)求证:B,M关于AE对称;
    (2)若的平分线交AE的延长线于G,求证:.
    2.(1)如图①,在正方形中,、分别是、上的点,且,连接,探究、、之间的数量关系,并说明理由;
    (2)如图②,在四边形中,,,、分别是、上的点,且,此时(1)中的结论是否仍然成立?请说明理由.
    3.如图所示,正方形中,点E,F分别为BC,CD上一点,点M为EF上一点,D,M关于直线AF对称.连结DM并延长交AE的延长线于N,求证:.
    4.如图1,在正方形中,E是上一点,F是延长线上一点,且.
    (1)求证:;
    (2)在图1中,若G在上,且,则成立吗?为什么?
    (3)运用(1)(2)解答中所积累的经验和知识,完成下题:
    ①如图2,在直角梯形中,,,,E是上一点,且,,求的长.
    ②如图3,在中,,,,,则的面积为____(直接写出结果,不需要写出计算过程)
    5.如图正方形的边、在坐标轴上,已知点.将正方形绕点顺时针旋转一定的角度(小于),得到正方形,交线段于点,的延长线交线段于点,连接、.
    (1)求的度数.
    (2)当时,求点的坐标.
    (3)在(2)的条件下,直线上是否存在点,使以、、为顶点的三角形是等腰三角形?若存在,请直接写出点的坐标,若不存在,请说明理由.
    6.已知正方形,,绕点A顺时针旋转,它的两边分别交、于点M、N,于点H.
    (1)如图①,当时,可以通过证明,得到与的数量关系,这个数量关系是___________;
    (2)如图②,当时,(1)中发现的与的数量关系还成立吗?说明理由;
    (3)如图③,已知中,,于点H,,,求的长.
    7.已知四边形ABCD是正方形,一个等腰直角三角板的一个锐角顶点与A点重合,将此三角板绕A点旋转时,两边分别交直线BC,CD于M,N.
    (1)如图1,当M,N分别在边BC,CD上时,求证:BM+DN=MN
    (2)如图2,当M,N分别在边BC,CD的延长线上时,请直接写出线段BM,DN,MN之间的数量关系
    (3)如图3,直线AN与BC交于P点,MN=10,CN=6,MC=8,求CP的长.
    8.已知:四边形为正方形,是等腰,.
    (1)如图:当绕点旋转时,若边、分别与、相交于点、,连接,试证明:.
    (2)如图,当绕点旋转时,若边、分别与、的延长线相交于点、,连接.
    ①试写出此时三线段、、的数量关系并加以证明.
    ②若,,求:正方形的边长以及中边上的高.
    9.已知正方形ABCD,∠EAF=45°,将∠EAF绕顶点A旋转,角的两边始终与直线CD交于点E,与直线BC交于点F,连接EF.
    (1)如图①,当BF=DE时,求证:△ABF≌△ADE;
    (2)若∠EAF旋转到如图②的位置时,求证:∠AFB=∠AFE;
    (3)若BC=4,当边AE经过线段BC的中点时,在AF的右侧作以AF为腰的等腰直角三角形AFP,直接写出点P到直线AB的距离.
    数学课上,老师提出了这样一个问题:如图1,在正方形中,E,F分别是上的两点,连接交于点P.

    已知,求证:.
    甲小组同学的证明思路如下:
    由同角的余角相等可得.再由,,证得(依据:________),从而得.
    乙小组的同学猜想,其他条件不变,若已知,同样可证得,证明思路如下:
    由,可证得,可得,再根据角的等量代换即可证得.

    相关试卷

    【期中讲练测】苏科版八年级下册数学 03分式(考点专练).zip:

    这是一份【期中讲练测】苏科版八年级下册数学 03分式(考点专练).zip,文件包含期中讲练测苏科版八年级下册数学03分式考点专练原卷版docx、期中讲练测苏科版八年级下册数学03分式考点专练解析版docx等2份试卷配套教学资源,其中试卷共72页, 欢迎下载使用。

    【期中讲练测】沪教版八年级下册数学专题03四边形全章复习攻略 考点专练.zip:

    这是一份【期中讲练测】沪教版八年级下册数学专题03四边形全章复习攻略 考点专练.zip,文件包含期中讲练测沪教版八年级下册数学专题03四边形全章复习攻略考点专练原卷版docx、期中讲练测沪教版八年级下册数学专题03四边形全章复习攻略考点专练解析版docx等2份试卷配套教学资源,其中试卷共67页, 欢迎下载使用。

    【期中讲练测】沪教版八年级下册数学专题02代数方程全章复习攻略 考点专练.zip:

    这是一份【期中讲练测】沪教版八年级下册数学专题02代数方程全章复习攻略 考点专练.zip,文件包含期中讲练测沪教版八年级下册数学专题02代数方程全章复习攻略考点专练原卷版docx、期中讲练测沪教版八年级下册数学专题02代数方程全章复习攻略考点专练解析版docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map